

Software Manual

Servo Positioning Controller ARS 2000

Metronix Meßgeräte und Elektronik GmbH Kocherstraße 3 D-38120 Braunschweig Germany
 Phone:
 +49-(0)531-8668-0

 Fax:
 +49-(0)531-8668-555

 E-mail:
 vertrieb@metronix.de

 http://www.metronix.de

Copyrights

© 2011 Metronix Meßgeräte und Elektronik GmbH. All rights reserved.

The information and data in this document have been composed to the best of our knowledge. However, deviations between the document and the product cannot be excluded entirely. For the devices and the corresponding software in the version handed out to the customer, Metronix guarantees the contractual use in accordance with the user documentation. In the case of serious deviations from the user documentation, Metronix has the right and the obligation to repair, unless it would involve an unreasonable effort. A possible liability does not include deficiencies caused by deviations from the operating conditions intended for the device and described in the user documentation.

Metronix does not guarantee that the products meet the buyer's demands and purposes or that they work together with other products selected by the buyer. Metronix does not assume any liability for damages resulting from the combined use of its products with other products or resulting from improper handling of machines or systems.

Metronix Meßgeräte und Elektronik GmbH reserves the right to modify, amend, or improve the document or the product without prior notification.

This document may, neither entirely nor in part, be reproduced, translated into any other natural or machine-readable language nor transferred to electronic, mechanical, optical or any other kind of data media, without expressive authorisation by the author.

Trademarks

ServoCommander[™] is a registered trademark of Metronix Meßgeräte und Elektronik GmbH.

Microsoft[®] and Windows[®] are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Revision log					
Author:		Metronix Meßgeräte und Elektronik GmbH			
Manual name:		Software Manual "Servo Positioning Controller ARS 2000"			
File name:		SW-HB_ARS2000_	4p0_EN.doc		
File storage I	ocation:				
Consec. no.	Description		Revision index	Date of modification	
001	Release for distribut	tion	1.0	27.02.2003	
002	Revision		1.1	10.06.2003	
003	Adaptation to produ	ct step 2.1	2.0	22.10.2003	
004	Adaptation to produ	ct step 2.2	2.2	31.05.2005	
005	Adaptation to produ	ct step 2.3	2.3	16.06.2006	
006	Adaptation to produ	ct step 2.5	2.5	05.07.2006	
007	Adaptation to produ	ct step 2.7	2.6	13.12.2006	
008	Adaptation to product step 2.8		2.7	19.10.2007	
009	Updated Corporate technical changes	Identity – No	3.0	18.04.2011	
010	Changes in chapter	2.2	4.0	28.06.2011	

TABLE OF CONTENTS:

1	GEN	IERAL		13
	1.1	Docume	entation	13
	1.2	Scope of	of Delivery	14
2	SAF		TES FOR ELECTRICAL DRIVES AND CONTROLLERS	15
	2.1	Used S	ymbols	15
	2.2	Genera	I Notes	16
	2.3	Danger	Resulting from Misuse	17
	2.4	Safety N	Notes	18
		2.4.1	General Safety Notes	18
		2.4.2	Safety Notes for Assembly and Maintenance	19
		2.4.3	Protection against Contact with Electrical Parts	20
		2.4.4	Protection against Electrical Shock by Means of Protecti	ve Extra-
		215	Protection against Dangerous Movements	·····21
		2.4.5	Protection against Contact with Hot Parts	22
		2.4.7	Protection during Handling and Assembly	
_				
3	GEN MET	NERAL IN FRONIX \$	NFORMATION ON THE PARAMETERISATION PROGRA SERVOCOMMANDER [™]	AM 24
	3.1	Basic In	iformation	24
	3.1 3.2	Basic In Metroni	formation x ServoCommander [™] Features	24 25
	3.1 3.2 3.3	Basic In Metroni Hardwa	nformation x ServoCommander [™] Features re and Software Requirements	24 25 25
	3.13.23.33.4	Basic In Metroni Hardwa Using th	nformation x ServoCommander [™] Features re and Software Requirements ne Parameterisation Program	24 25 25 26
	3.1 3.2 3.3 3.4	Basic In Metronia Hardwa Using th 3.4.1	nformation x ServoCommander [™] Features re and Software Requirements ne Parameterisation Program Standard Buttons	24 25 25 26 26
	3.1 3.2 3.3 3.4	Basic In Metroni: Hardwa Using th 3.4.1 3.4.2	nformation x ServoCommander [™] Features re and Software Requirements ne Parameterisation Program Standard Buttons Numerical Input Fields	
	3.1 3.2 3.3 3.4	Basic In Metroni: Hardwa Using th 3.4.1 3.4.2 3.4.3	nformation	24 25 25 26 26 26 26 27
	 3.1 3.2 3.3 3.4 	Basic In Metronia Hardwa Using th 3.4.1 3.4.2 3.4.3 3.4.4	nformation	
	 3.1 3.2 3.3 3.4 	Basic In Metroni: Hardwa Using th 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5	nformation	
	 3.1 3.2 3.3 3.4 	Basic In Metronia Hardwa Using th 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.4.6	nformation	
	 3.1 3.2 3.3 3.4 	Basic In Metroni: Hardwa Using th 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.4.6 3.4.7	nformation	
4	3.1 3.2 3.3 3.4	Basic In Metroni: Hardwa Using th 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.4.6 3.4.6 3.4.7	nformation	
4	3.1 3.2 3.3 3.4 INS ⁻ 4.1	Basic In Metroni: Hardwa Using th 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.4.6 3.4.6 3.4.7 FALLATI Installat	nformation	
4	3.1 3.2 3.3 3.4 INS 4.1 4.2	Basic In Metroni: Hardwa Using th 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.4.6 3.4.7 FALLATI Installat Configu	nformationx ServoCommander [™] Features re and Software Requirements	
4	3.1 3.2 3.3 3.4 INS 4.1 4.2 4.3	Basic In Metroni: Hardwa Using th 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.4.6 3.4.6 3.4.7 FALLATI Installat Configu Configu	nformationx ServoCommander [™] Features re and Software Requirements ne Parameterisation Program	

	4.5	Optimizi	ng of ser	ial communication	33
5	LOA	DING OF	FIRMW	ARE AND PERFORMING COMMISSIONING	34
	5.1	Loading	Firmwar	e	34
	5.2	Commis	sioning		36
		5.2.1	Commis	ssioning Warning	37
		5.2.2	Resettir	ng of Commissioning Information	38
		5.2.3	Inquiry	Standard Drive or Special Motor	38
		5.2.4	Loading	g of a Preset Parameter Set	38
		5.2.5	Genera	I Configuration	40
		5.2.6	Rotary	axis operation	44
		5.2.7	Configu	Iration of Display Units	46
		5.2.	.7.1	Rotary Operation	47
		5.2.	.7.2	Translatory Operation	47
		5.2.	.7.3	Other Possible Configurations	48
		5.2.	.7.4	Quitting the Menu (Applies only to Commissioning)	48
		5.2.8	Configu	Iration of Input Limits	48
		5.2.9	IO Cont	figuration	49
		5.2.10	Motor lo	dentification via List	50
		5.2.11	Configu	iration of motor specifications	51
		5.2.12	Safety I	Parameters	52
		5.2.13	PFC (P	ower Factor Control)	54
		5.2.14	Temper	rature Monitoring	54
		5.2.15	Commu	Itation Encoder	56
		5.2.16	Configu	Iration of the Motor Feedback	56
		5.2.17	Angle E	ncoder Identification (Automatic Determination)	58
		5.2.18	Angle E	ncoder Data (Manual Input)	59
		5.2.19	Automa	the Identification of the Current Controller	60
		5.2.20	Manual	Input of Current Controller Data	61
		5.2.21	Setting	the Limit Switch Polarity	61
		5.2.22	Conligu		62
		5.2. 5.2	.22.1 22.1 1	Setting the Speed Controller to Basic Parameters	62 62
		5.2	.22.1.2	Manual Configuration of the Speed Controller	63
		5.2	.22.2	Configuration of the Position Controller	63
		5.2.	.22.2.1	Setting the Position Controller to Basic Parameters	63
		5.2.	.22.2.2	Manual Configuration of the Position Controller	63
		5.2.23	Permar	nent Storage of Determined Parameters	64
		5.2.24	Saving	as DCO File	65
6	FIRS	ST STAR	T AND O	PTIMISATION OF THE MOTOR	67

	6.1	Configuration of the Controller Enabling Logic67		
	6.2	Configu	ration of the Speed-Controlled Mode	68
	6.3	Preparir	ng the Actual Value Display	68
	6.4	Selectin	g Setpoints	69
	6.5	Enter Se	etpoints (Speed, Torque)	70
		6.5.1	Configurations for Analogue Inputs	72
		6.5.2	Setpoints and Setpoint Ramps	73
	6.6	Starting	the Drive in Speed-Controlled Mode	74
	6.7	Current Controller Optimisation		
	6.8	Speed 0	Controller Optimisation	76
		6.8.1	Overview	76
		6.8.2	Actual Speed Value Filter Optimisation	77
		6.8.3	Optimisation Speed Controller: Gain and Time Constant	77
		6.8.4	Optimisation Strategies (Speed Controller)	78
		6.8.5	Position Controller Optimisation	80
7	DISF		IITS (DETAILS)	83
	7.1	User De	fined Display Units	84
	7.2	Direct Ir	nput of the Distance, velocity and Acceleration Units	85
8	CON		ATION	86
8	CON 8.1	IMUNIC Commu	ATION nication via RS232	86 87
8	CON 8.1 8.2	IMUNIC Commu Commu	ATION nication via RS232 nication via Ethernet / UDP	86 87
8	CON 8.1 8.2	Commu Commu Commu 8.2.1	ATION nication via RS232 nication via Ethernet / UDP Assignment of Network Addresses and Masks	86 87 87 88
8	CON 8.1 8.2	Commu Commu 8.2.1 8.2.2	ATION nication via RS232 nication via Ethernet / UDP Assignment of Network Addresses and Masks Configuring the Ethernet Communication parameters (Ethe	86 87 87 88 ernet
8	CON 8.1 8.2	MUNIC Commu 8.2.1 8.2.2	ATION nication via RS232 nication via Ethernet / UDP Assignment of Network Addresses and Masks Configuring the Ethernet Communication parameters (Ether Module)	86 87 87 88 ernet 88
8	8.1 8.2	MUNIC Commu 8.2.1 8.2.2 8.2.3	ATION nication via RS232 nication via Ethernet / UDP Assignment of Network Addresses and Masks Configuring the Ethernet Communication parameters (Ethe Module) Setting the Ethernet Communication Parameters (Ethernet Module).	86 87 88 ernet 88 88
8	8.1 8.2	MUNIC Commu 8.2.1 8.2.2 8.2.3 8.2.3	ATION nication via RS232 nication via Ethernet / UDP Assignment of Network Addresses and Masks Configuring the Ethernet Communication parameters (Ethe Module) Setting the Ethernet Communication Parameters (Ethernet Module) Activation of the UDP Communication (Ethernet)	86 87 87 88 ernet 88 89 90
8 9	CON 8.1 8.2	MUNIC Commu 8.2.1 8.2.2 8.2.3 8.2.4 8.2.4	ATION nication via RS232 nication via Ethernet / UDP Assignment of Network Addresses and Masks Configuring the Ethernet Communication parameters (Ethe Module) Setting the Ethernet Communication Parameters (Ethernet Module) Activation of the UDP Communication (Ethernet)	86 87 88 ernet 88 89 90
8 9	 CON 8.1 8.2 PAR 9.1 	MUNIC/ Commu 8.2.1 8.2.2 8.2.3 8.2.3 8.2.4 AMETEI Function	ATION nication via RS232 nication via Ethernet / UDP Assignment of Network Addresses and Masks Configuring the Ethernet Communication parameters (Ether Module) Setting the Ethernet Communication Parameters (Ethernet Module) Activation of the UDP Communication (Ethernet) R SETS nalities of the Online Parameterisation	86 87 88 ernet 88 89 90 92 93
8	CON 8.1 8.2 PAR 9.1	MUNIC/ Commu 8.2.1 8.2.2 8.2.3 8.2.4 8.2.4 AMETEI Function 9.1.1	ATION nication via RS232 nication via Ethernet / UDP Assignment of Network Addresses and Masks Configuring the Ethernet Communication parameters (Ether Module) Setting the Ethernet Communication Parameters (Ethernet Module) Activation of the UDP Communication (Ethernet) R SETS nalities of the Online Parameterisation Online Parameterisation: General	
9	CON 8.1 8.2 PAR 9.1	MUNIC Commu 8.2.1 8.2.2 8.2.3 8.2.4 AMETER Function 9.1.1 9.1.2	ATION nication via RS232 nication via Ethernet / UDP Assignment of Network Addresses and Masks Configuring the Ethernet Communication parameters (Ethernet Module) Setting the Ethernet Communication Parameters (Ethernet Module) Activation of the UDP Communication (Ethernet) R SETS nalities of the Online Parameterisation Online Parameterisation: General Loading and Saving of Parameter Sets	
9	 CON 8.1 8.2 PAR 9.1 9.2 	Commu Commu 8.2.1 8.2.2 8.2.3 8.2.4 8.2.4 Function 9.1.1 9.1.2 Offline F	ATION nication via RS232 nication via Ethernet / UDP Assignment of Network Addresses and Masks Configuring the Ethernet Communication parameters (Ethernet Module) Setting the Ethernet Communication Parameters (Ethernet Module) Activation of the UDP Communication (Ethernet) R SETS nalities of the Online Parameterisation Online Parameterisation: General Loading and Saving of Parameter Sets Parameterisation	
9	 CON 8.1 8.2 PAR 9.1 9.2 	MUNIC Commu 8.2.1 8.2.2 8.2.3 8.2.4 AMETER Function 9.1.1 9.1.2 Offline F 9.2.1	ATION nication via RS232 nication via Ethernet / UDP Assignment of Network Addresses and Masks Configuring the Ethernet Communication parameters (Ether Module) Setting the Ethernet Communication Parameters (Ethernet Module) Activation of the UDP Communication (Ethernet) Activation of the UDP Communication (Ethernet) Nolline Parameterisation: General Loading and Saving of Parameter Sets Parameterisation	
9	 CON 8.1 8.2 PAR 9.1 9.2 9.3 	Commu Commu 8.2.1 8.2.2 8.2.3 8.2.4 AMETER Function 9.1.1 9.1.2 Offline F 9.2.1 Printing	ATION nication via RS232	

	10.1 Error Windo	W	100
	10.1.1 Be	haviour in the Event of an Error	100
	10.2 Error Manag	jement	101
	10.3 Error Buffer	·	102
11			
	CONFIGURATIO	NS	105
	11.1 Speed-contr	colled Mode	105
			105
	11.2 Torque-cont	rolled Mode	106
	11.3 Position-con	trolled Mode and Positioning Mode	107
	11.3.1 Se	tting the Operating Mode	108
	11.3.2 Glo	bal Positioning Settings	109
	11.3.3 Ho	ming	110
	11.3.3.1	Homing Methods / Overview	110
	11.3.3.1	.1 Method 1: Negative Limit Switch and Index Pulse	111
	11.3.3.1	.2 Method 2: Positive Limit Switch and Index Pulse	111
	11.3.3.1	.3 Methods 7 and 11: Homing on Home Switch and Index Pulse	112
	11.3.3.1	.4 Method 17: Homing on the Negative Limit Switch	113
	11.3.3.1	.5 Method 18: Homing on the Positive Limit Switch	113
	11.3.3.1	.6 Methods 23 and 27: Homing on Homing Switch	113
	11.3.3.1	.7 Methods -23 and -27: Homing on Homing Switch	114
	11.3.3.1	.8 Methods 32 and 33: Homing on Index Pulse	114
	11.3.3.1	.9 Method 34: Homing on the Current Position	115
	11.3.3.1	.10 Method -1: Negative End Stop and Index Pulse	115
	11.3.3.1	.11 Method -2: Positive End Stop and Index Pulse	115
	11.3.3.1	12 Method 17. Homing to the Regative End Stop	110
	11.3.3.1		110
	11.3.3.2	Parameterisation of the Homing Method	117
	11.3.3.3	Homing: Settings	117
	11.3.3.4	Homing: Profile	119
	11.3.3.4	.1 Homing: Index Pulse Control	119
	11.3.3.4	.2 Tab: Torques	120
	11.3.3.4	.3 Tab: Flying referencing	121
	11.3.4 Po	sitioning	122
	11.3.4.1	Destination Parameters: General Buttons	122
	11.3.4.1	.1 Tab: Settings	122
	11.3.4.1	.2 Tab: Driving Profile	125
	11.3.4.1	.3 Tab: Experts	126
	11.3.4.2	Go to Destinations	127
	11.3.4.2	.1 Positioning via Digital Inputs	128
	11.3.4.2	.2 Positioning via RS232 (Serial Interface)	128
	11.3.5 Co	urse Program	129
	11.3.5.1	Overview	129

	11.	3.5.2	Global Settings	130
	11.	3.5.3	Linking Positions	130
	11.	3.5.4	Digital Inputs	132
	11.3.6	Jogging	g Mode	132
	11.3.7	Configu	uration of Digital Outputs	134
12	APPLICATIO	NS WIT	H SEVERAL ANGLE ENCODERS	135
	12.1 Synchro	nisation	/ Parameterisation of the Master	136
	12.2 Synchro	nisation	/ Parameterisation of the Slave	137
	12.3 Speed S	Synchron	ous Operation	137
	12.4 Position	Synchro	onous Operation	138
	12.5 Flying S	aw (proc	duct level 3.4)	139
	12.6 Cam dis	k / axis e	error compensation / cam switch	139
	12.6.1	Cam di	sk principle	139
	12.6.2	Axis er	ror compensation principle	141
	12.6.3	Cam sv	witch principle	141
	12.6.4	Implem parame	entation in the ARS 2000 range and in the eterization program	142
	12.6.5	Structu compe	re of the table for cam disks, cam switches and	d axis error 143
	12.6.6	Physica compe	al units / control parameters for cam disks and nsation	axis error 147
	12.6.6 12.6.7	Physica comper Menu f	al units / control parameters for cam disks and nsation or controlling the cam disks	axis error 147 148
	12.6.6 12.6.7 12.	Physica comper Menu f 6.7.1	al units / control parameters for cam disks and nsation or controlling the cam disks "Activation" tab	axis error 147 148 148
	12.6.6 12.6.7 12. 12.	Physica comper Menu f 6.7.1 6.7.2	al units / control parameters for cam disks and nsation or controlling the cam disks "Activation" tab Cam disk active	axis error 147 148 148 149
	12.6.6 12.6.7 12. 12. 12.	Physica comper Menu f 6.7.1 6.7.2 6.7.3	al units / control parameters for cam disks and nsation or controlling the cam disks "Activation" tab Cam disk active Cam disk no	axis error 147 148 148 149 149
	12.6.6 12.6.7 12. 12. 12. 12.	Physica comper Menu f 6.7.1 6.7.2 6.7.3 6.7.4	al units / control parameters for cam disks and nsation or controlling the cam disks "Activation" tab Cam disk active Cam disk no "Parameters" tab	axis error 147 148 148 149 149 149
	12.6.6 12.6.7 12. 12. 12. 12. 12.	Physica comper Menu f 6.7.1 6.7.2 6.7.3 6.7.4 6.7.5	al units / control parameters for cam disks and nsation or controlling the cam disks "Activation" tab Cam disk active Cam disk no "Parameters" tab Offset reference position	axis error 147 148 148 149 149 149 149 150
	12.6.6 12.6.7 12. 12. 12. 12. 12. 12.	Physica comper Menu f 6.7.1 6.7.2 6.7.3 6.7.4 6.7.5 6.7.6	al units / control parameters for cam disks and nsation or controlling the cam disks "Activation" tab Cam disk active Cam disk no "Parameters" tab Offset reference position Gain	axis error 147 148 148 149 149 149 150 150
	12.6.6 12.6.7 12. 12. 12. 12. 12. 12. 12.	Physica compet Menu f 6.7.1 6.7.2 6.7.3 6.7.4 6.7.5 6.7.6 6.7.7	al units / control parameters for cam disks and nsation or controlling the cam disks "Activation" tab Cam disk active Cam disk no "Parameters" tab Offset reference position Gain "Transfer" tab	axis error 147 148 148 149 149 149 150 150 150
	12.6.6 12.6.7 12. 12. 12. 12. 12. 12. 12. 12.	Physica compet Menu f 6.7.1 6.7.2 6.7.3 6.7.4 6.7.5 6.7.6 6.7.7 6.7.8	al units / control parameters for cam disks and nsation or controlling the cam disks "Activation" tab Cam disk active Cam disk no "Parameters" tab Offset reference position Gain "Transfer" tab Excel >> Servo	axis error 147 148 148 149 149 149 149 150 150 150
	12.6.6 12.6.7 12. 12. 12. 12. 12. 12. 12. 12. 12. 12.	Physica comper Menu f 6.7.1 6.7.2 6.7.3 6.7.4 6.7.5 6.7.6 6.7.6 6.7.7 6.7.8 Menu f	al units / control parameters for cam disks and nsation or controlling the cam disks "Activation" tab Cam disk active Cam disk no "Parameters" tab Offset reference position Gain "Transfer" tab Excel >> Servo or controlling the axis error compensation	axis error 147 148 148 149 149 149 149 150 150 150 151
	12.6.6 12.6.7 12. 12. 12. 12. 12. 12. 12. 12. 12. 12.	Physica comper Menu f 6.7.1 6.7.2 6.7.3 6.7.4 6.7.5 6.7.6 6.7.6 6.7.7 6.7.8 Menu f 6.8.1	al units / control parameters for cam disks and nsation or controlling the cam disks "Activation" tab Cam disk active Cam disk no "Parameters" tab Offset reference position Gain "Transfer" tab Excel >> Servo or controlling the axis error compensation "Activation" tab	axis error 147 148 148 149 149 149 149 150 150 150 151 151
	12.6.6 12.6.7 12. 12. 12. 12. 12. 12. 12. 12. 12. 12.	Physica comper Menu f 6.7.1 6.7.2 6.7.3 6.7.4 6.7.5 6.7.6 6.7.7 6.7.8 Menu f 6.8.1 6.8.2	al units / control parameters for cam disks and nsation or controlling the cam disks "Activation" tab Cam disk active Cam disk no Gam disk no "Parameters" tab Offset reference position Gain "Transfer" tab Excel >> Servo or controlling the axis error compensation "Activation" tab	axis error 147 148 148 149 149 149 149 150 150 150 151 151 151
	12.6.6 12.6.7 12. 12. 12. 12. 12. 12. 12. 12. 12. 12.	Physica comper Menu f 6.7.1 6.7.2 6.7.3 6.7.4 6.7.5 6.7.6 6.7.7 6.7.8 Menu f 6.8.1 6.8.1 6.8.2 6.8.3	al units / control parameters for cam disks and nsation or controlling the cam disks "Activation" tab Cam disk active Cam disk no "Parameters" tab Offset reference position Gain "Transfer" tab Excel >> Servo or controlling the axis error compensation "Activation" tab Axis error compensation active Axis error compensation no	axis error 147 148 148 149 149 149 150 150 150 151 151 151 152
	12.6.6 12.6.7 12. 12. 12. 12. 12. 12. 12. 12. 12. 12.	Physica comper Menu f 6.7.1 6.7.2 6.7.3 6.7.4 6.7.5 6.7.6 6.7.6 6.7.7 6.7.8 Menu f 6.8.1 6.8.1 6.8.2 6.8.3 6.8.4 6.8.4	al units / control parameters for cam disks and nsation or controlling the cam disks "Activation" tab Cam disk active Cam disk no "Parameters" tab Offset reference position Gain "Transfer" tab Excel >> Servo or controlling the axis error compensation "Activation" tab Axis error compensation active Axis error compensation no "Transfer" tab	axis error 147 148 148 149 149 149 149 150 150 150 151 151 151 152 152 152
	12.6.6 12.6.7 12. 12. 12. 12. 12. 12. 12. 12. 12. 12.	Physica comper Menu f 6.7.1 6.7.2 6.7.3 6.7.4 6.7.5 6.7.6 6.7.7 6.7.8 Menu f 6.8.1 6.8.2 6.8.3 6.8.4 6.8.5	al units / control parameters for cam disks and nsation or controlling the cam disks "Activation" tab Cam disk active Cam disk no "Parameters" tab Offset reference position Gain "Transfer" tab Excel >> Servo or controlling the axis error compensation "Activation" tab Axis error compensation active Axis error compensation no "Transfer" tab Excel >> Servo	axis error 147 148 148 149 149 149 149 150 150 150 151 151 151 152 152 152
13	12.6.6 12.6.7 12. 12. 12. 12. 12. 12. 12. 12. 12. 12.	Physica comper Menu f 6.7.1 6.7.2 6.7.3 6.7.4 6.7.5 6.7.6 6.7.7 6.7.8 Menu f 6.8.1 6.8.2 6.8.3 6.8.4 6.8.5 JNCTIO	al units / control parameters for cam disks and nsation or controlling the cam disks	axis error 147 148 148 149 149 149 149 150 150 150 151 151 151 152 152 152 152 152

13.1.1 Applications with the service module / case examples157					
13.2 Activating the Default Parameter Set160					
13.3 Transfer Window161					
13.4 Exiting the Program					
13.5 Analogue Monitor162					
13.6 Motor Data Configuration162					
13.7 Configuration of the Power Stage163					
13.8 Angle Encoder Settings164					
13.9 Digital Inputs172					
13.9.1 Configuration of the Digital Inputs173					
13.9.2 Extension of the Digital Inputs174					
13.10 Digital Outputs					
13.10.1 Configuring Digital Outputs176					
13.10.2 Configuration of the Messages for the Digital Outputs177					
13.10.2.1 Speed Signal Window: "Comparison Speed Reached"177					
13.10.2.2 Destination Signal Window: "X _{act} = X _{dest} "					
13.10.2.3Following Error Signal Window: "Following Error"					
13.11 Position trigger179					
13.11.1 Position trigger					
13.11.2 Rotor position trigger182					
13.12 Brake Control and Automatic Brake183					
13.13 Configuration of the DC-link Monitoring185					
13.14 Selection of the External Braking Resistor186					
13.15 Braking Resistor Wizard187					
13.16 Control Circuit Cycle Times189					
13.17 Notch Filter					
13.18 Communication by RS232191					
13.18.1 Selection of the RS232 Interface191					
13.18.2 Communication Window for RS232 Transmission					
13.19 Oscilloscope					
13.19.1 Oscilloscope Settings193					
13.19.1.1 Tabs: CH1 CH4193					
13.19.1.2 Tab: Time Base194					
13.19.1.3 Tab: Trigger195					
13.19.2 Oscilloscope Window196					
13.19.2.1 Symbol Buttons of the Oscilloscope					

13.4	19.2.2	Additional Buttons and Controls	198
13.4	19.2.3	Curve Display	198
13.4	19.2.4	"Settings" Overview	200
13.20 Revers	ing Ger	erator	200
13.21 Info Wi	ndow		202
13.22 Fast Ac	ccess vi	a Icon Bar	203
OPERATING	MODE	AND ERROR MESSAGE	205
14.1 Operatin	ng Mode	and Error Display	205
14.2 Error / W	Varning	Messages	206
FIELD BUS C	OUPLI	NG	216
15.1 Field Bu	s Syste	ms	216
15.1.1	Config	uration of CANopen Communication Parameters	216
15.1.2	CANop	pen: Configuration of the Transmit PDOs	217
15.1.3	CANop	pen: Configuration of the Receive PDOs	220
15.1.4	CANop	pen: Configuration of the Factor Group	223
15.1.5	CANop	pen: Display of the control/status word	224
15.1.6	CANop	pen: Display of the PDO data	225
15.1.7	Config	uration of PROFIBUS-DP Communication Param	neters.227
15.1.8	Config	uration of Profibus Telegrams	228
15.1.9	Physic	al Units Profibus	229
15.1.10	Additio	nal Support of PROFIBUS-DP Functionality	230
15.1.11	PROF	BUS: Display of the control/status word	230
15.1.12	PROF	BUS: Display of the telegram data	231
15.1.13	Config	uration of SERCOS Communication Parameters	232
15.1.14	Motion	Coordinator MC 2000	233
15.1.15	Config	uration of EtherCAT Communication Parameters	234
	13. 13. 13.20 Revers 13.21 Info Wi 13.22 Fast Ac OPERATING 14.1 Operatin 14.2 Error / W FIELD BUS C 15.1 Field Bu 15.1.1 15.1.2 15.1.3 15.1.4 15.1.5 15.1.6 15.1.7 15.1.8 15.1.7 15.1.8 15.1.9 15.1.10 15.1.10 15.1.11 15.1.12 15.1.13 15.1.14 15.1.14 15.1.15	13.19.2.2 13.19.2.3 13.19.2.4 13.20 Reversing Gen 13.21 Info Window 13.22 Fast Access via OPERATING MODE 14.1 Operating Mode 14.2 Error / Warning FIELD BUS COUPLIN 15.1 Field Bus System 15.1.1 Config 15.1.2 CANop 15.1.3 CANop 15.1.4 CANop 15.1.5 CANop 15.1.6 CANop 15.1.7 Config 15.1.8 Config 15.1.9 Physic 15.1.10 Additio 15.1.11 PROFI 15.1.12 PROFI 15.1.13 Config 15.1.14 Motion 15.1.15 Config	13.19.2.2 Additional Buttons and Controls 13.19.2.3 Curve Display 13.19.2.4 "Settings" Overview 13.20 Reversing Generator 13.21 Info Window 13.22 Fast Access via Icon Bar OPERATING MODE AND ERROR MESSAGE 14.1 Operating Mode and Error Display 14.2 Error / Warning Messages FIELD BUS COUPLING 15.1 Field Bus Systems 15.1.1 Configuration of CANopen Communication Parameters 15.1.2 CANopen: Configuration of the Transmit PDOS 15.1.3 CANopen: Configuration of the Receive PDOS 15.1.4 CANopen: Configuration of the Factor Group 15.1.5 CANopen: Display of the control/status word 15.1.6 CANopen: Display of the PDO data 15.1.7 Configuration of PROFIBUS-DP Communication Parameters 15.1.8 Configuration of PROFIBUS-DP Functionality 15.1.9 Physical Units Profibus 15.1.10 Additional Support of PROFIBUS-DP Functionality 15.1.11 PROFIBUS: Display of the control/status word 15.1.12 PROFIBUS: Display of the telegram data

List of Figures:

Figure 1:	Communication paths	86
Figure 2:	Online parameterisation	94
Figure 3:	Offline parameterisation	97
Figure 4:	Homing to the negative limit switch with evaluation of the index pulse	111
Figure 5:	Homing to the positive limit switch with evaluation of the index pulse	111
Figure 6:	Homing on home switch with evaluation of the index pulse in the case of an initially positive movement	112
Figure 7:	Homing on home switch with evaluation of the index pulse in the case of an initially	
	negative movement	112
Figure 8:	Homing on negative limit switch	113
Figure 9:	Homing on positive limit switch	113
Figure 10:	Homing on home switch with positive initial movement	114
Figure 11:	Homing to the home switch with negative initial movement	114
Figure 12:	Homing on the index pulse	115
Figure 13:	Homing to the negative end stop with index pulse evaluation	115
Figure 14:	Homing to the positive end stop with index pulse evaluation	116
Figure 15:	Homing to the negative end stop	116
Figure 16:	Homing to the positive end stop	116
Figure 17:	Positioning: Driving profile	125
Figure 18:	Master-Slave operation	136
Figure 19:	Brake control: Run delay and stop delay	184
Figure 20:	Brake control: Automatic brake	185

List of Tables:

Table 1:	Scope of delivery	14
Table 2:	General symbols	15
Table 3:	Control elements	27
Table 4:	Directory structure	29
Table 5:	Recovering problems with serial communication	32
Table 6:	Display units Rotary operation	47
Table 7:	Troubleshooting: Speed control	75
Table 8:	Setting of base configuration and display units	83
Table 9:	Representation of the operating states in the parameterisation program	86
Table 10:	Possible action depending on the operating state of the communication	87
Table 11:	Recovering problems with UDP communication	90
Table 12:	Overview parameter set functions	92
Table 13:	Online parameterisation	93
Table 14:	Offline parameterisation	96
Table 15:	Homing modes	110
Table 16:	Positioning via digital inputs	128
Table 17:	Following position NEXT1/NEXT2: Examples	131
Table 18:	Configuration of the digital inputs	174
Table 19:	Configuration of the digital outputs	176
Table 20:	Oscilloscope: Tab "Trigger edges"	196
Table 21:	Oscilloscope buttons	197
Table 22:	Fast access via icon bar	203
Table 23:	Display of operating mode and errors	205
Table 24:	Error / Warning messages	206

1 General

1.1 Documentation

This product manual serves the purpose of safe use of the parameterisation software Metronix ServoCommander[™] for the servo positioning controller ARS 2000 series servo controller.

For more information, please refer to the following manuals of the ARS 2000 series products:

- Product Manual "Servo Positioning Controller ARS 2100": Description of the technical specifications and the device functionality as well as notes on the installation and the operation of the servo positioning controller ARS 2100.
- Product manual "Servo Positioning Controller ARS 2302 2310": Description of the technical data and the device functionality plus notes concerning the installation and operation of ARS 2302, 2305 and 2310 servo positioning controllers.
- Product manual "Servo Positioning Controller ARS 2320 and 2340": Description of the technical data and the device functionality plus notes concerning the installation and operation of ARS 2320 and 2340 servo positioning controllers.
- CANopen Manual "Servo Positioning Controller ARS 2000": Description of the implemented CANopen protocol as per DSP402.
- PROFIBUS Manual "Servo Positioning Controller ARS 2000": Description of the implemented PROFIBUS-DP protocol.
- SERCOS Manual "Servo Positioning Controller ARS 2000": Description of the implemented SERCOS functionality.
- Product manual "Ethernet Technology Module": Description of the technical data and the device functionality plus notes concerning the installation and operation Ethernet Technology Module.

The implementation of the entire software functionality of the ARS 2000 series will be subject to a step-by-step development process.

This version of the software manual describes the functions of firmware 3.5 and those of firmware 3.x, which is currently being developed.

Some headings and text passages in this manual contain notes in the form of <FW3.x> indicating the availability of the functions in the corresponding firmware version.

Some of the shown windows of the parameterisation program Metronix ServoCommander[™] do not yet correspond to the final version and may deviate from the actual parameterisation software Metronix ServoCommander[™].

1.2 Scope of Delivery

The scope of delivery includes:

Table 1:Scope of delivery

1	CD-ROM with installation program Metronix ServoCommander TM
---	--

2 Safety Notes for Electrical Drives and Controllers

2.1 Used Symbols

Information

Important information and notes.

រាំ

Application

Additional Information for application purposes

Caution!

Nonobservance may result in severe property damages.

DANGER !

Nonobservance may result in property damages and in personal injuries.

Caution! Dangerous voltages.

The safety note indicates a possible perilous voltage.

Further symbols:

Table 2:General symbols

	Floppy disk symbol:	All subsequent steps concern settings in the parameterisation program Metronix ServoCommander TM .
ŧ	Plug symbol:	All subsequent steps concern the hardware, i.e. the servo positioning controller ARS 2000.

2.2 General Notes

In case of damage resulting from non-compliance with the safety notes in this manual, Metronix Meßgeräte und Elektronik GmbH will not assume any liability.

Prior to the initial use you must read the chapters *Safety Notes for Electrical Drives and Controllers* starting on *Page 15*.

If the documentation in the language at hand is not understood accurately, please contact and inform your supplier.

Sound and safe operation of the servo drive controller requires proper and professional transportation, storage, assembly and installation as well as proper operation and maintenance. Only trained and qualified personnel may handle electrical devices:

TRAINED AND QUALIFIED PERSONNEL

in the sense of this product manual or the safety notes on the product itself are persons who are sufficiently familiar with the setup, assembly, commissioning and operation of the product as well as all warnings and precautions as per the instructions in this manual and who are sufficiently qualified in their field of expertise:

- Education and instruction or authorisation to switch devices/systems on and off and to ground them as per the standards of safety engineering and to efficiently label them as per the job demands.
- Education and instruction as per the standards of safety engineering regarding the maintenance and use of adequate safety equipment.
- First aid training.

The following notes must be read prior to the initial operation of the system to prevent personal injuries and/or property damages:

ŕ	i
۲	5

These safety notes must be complied with at all times.

Do not try to install or commission the servo drive controller before carefully reading all safety notes for electrical drives and controllers contained in this document. These safety instructions and all other user notes must be read prior to any work with the servo drive controller.

In case you do not have any user notes for the servo drive controller, please contact your sales representative. Immediately demand these documents to be sent to the person responsible for the safe operation of the servo drive controller.

If you sell, rent and/or otherwise make this device available to others, these safety notes must also be included.

Ī

The user must not open the servo drive controller for safety and warranty reasons.

Professional control process design is a prerequisite for sound functioning of the servo drive controller!

DANGER!

Inappropriate handling of the servo drive controller and non-compliance of the warnings as well as inappropriate intervention in the safety features may result in property damage, personal injuries, electric shock or in extreme cases even death.

2.3 Danger Resulting from Misuse

DANGER!

High electrical voltage and high current!

Danger to life or serious personal injury from electrical shock!

DANGER!

High electrical voltage caused by wrong connections!

Danger to life or serious personal injury from electrical shock!

DANGER!

Surfaces of device housing may be hot!

Risk of injury! Risk of burning!

DANGER!

Dangerous movements!

Danger to life, serious personal injury or property damage due to unintentional movements of the motors!

2.4 Safety Notes

2.4.1 General Safety Notes

The servo drive controller corresponds to IP20 class of protection as well as pollution level 1. Make sure that the environment corresponds to this class of protection and pollution level.

Only use replacements parts and accessories approved by the manufacturer.

The devices must be connected to the mains supply as per EN regulations, so that they can be cut off the mains supply by means of corresponding separation devices (e.g. main switch, contactor, power switch).

The servo drive controller may be protected using an AC/DC sensitive 300 mA fault current protection switch (RCD = Residual Current protective Device).

Gold contacts or contacts with a high contact pressure should be used to switch the control contacts.

Preventive interference rejection measures should be taken for control panels, such as connecting contactors and relays using RC elements or diodes.

The safety rules and regulations of the country in which the device will be operated must be complied with.

The environment conditions defined in the product documentation must be kept. Safetycritical applications are not allowed, unless specifically approved by the manufacturer.

For notes on installation corresponding to EMC, please refer to a product manual of the ARS 2000 family. The compliance with the limits required by national regulations is the responsibility of the manufacturer of the machine or system.

The technical data and the connection and installation conditions for the servo drive controller are to be found in this product manual and must be met.

DANGER!

The general setup and safety regulations for work on power installations (e.g. DIN, VDE, EN, IEC or other national and international regulations) must be complied with.

Non-compliance may result in death, personal injury or serious property damages.

Without claiming completeness, the following regulations and others apply:

VDE 0100	Regulations for the installation of high voltage (up to 1000 V) devices
EN 60204	Electrical equipment of machines
EN 50178	Electronic equipment for use in power installations

2.4.2 Safety Notes for Assembly and Maintenance

The appropriate DIN, VDE, EN and IEC regulations as well as all national and local safety regulations and rules for the prevention of accidents apply for the assembly and maintenance of the system. The plant engineer or the operator is responsible for compliance with these regulations:

ת

The servo drive controller must only be operated, maintained and/or repaired by personnel trained and qualified for working on or with electrical devices.

Prevention of accidents, injuries and/or damages:

Additionally secure vertical axes against falling down or lowering after the motor has been switched off, e.g. by means of:

- Mechanical locking of the vertical axle,
- > External braking, catching or clamping devices or
- > Sufficient balancing of the axle.

The motor holding brake supplied by default or an external motor holding brake driven by the drive controller alone is not suitable for personal protection!

Render the electrical equipment voltage-free using the main switch and protect it from being switched on again until the DC bus circuit is discharged, in the case of:

- Maintenance and repair work
- Cleaning
- Iong machine shutdowns

Prior to carrying out maintenance work make sure that the power supply has been turned off, locked and the DC bus circuit is discharged.

The external or internal brake resistor carries dangerous DC bus voltages during operation of the servo drive controller and up to 5 minutes thereafter. Contact may result in death or serious personal injury.

Be careful during the assembly. During the assembly and also later during operation of the drive, make sure to prevent drill chips, metal dust or assembly parts (screws, nuts, cable sections) from falling into the device.

Also make sure that the external power supply of the controller (24V) is switched off.

The DC bus circuit or the mains supply must always be switched off prior to switching off the 24V controller supply.

Carry out work in the machine area only, if AC and/or DC supplies are switched off. Switched off output stages or controller enablings are no suitable means of locking. In the case of a malfunction the drive may accidentally be put into action.

Initial operation must be carried out with idle motors, to prevent mechanical damages e.g. due to the wrong direction of rotation.

Electronic devices are never fail-safe. It is the user's responsibility, in the case an electrical device fails, to make sure the system is transferred into a secure state.

The servo drive controller and in particular the brake resistor, externally or internally, can assume high temperatures, which may cause serious burns.

2.4.3 Protection against Contact with Electrical Parts

This section only concerns devices and drive components carrying voltages exceeding 50 V. Contact with parts carrying voltages of more than 50 V can be dangerous for people and may cause electrical shock. During operation of electrical devices some parts of these devices will inevitably carry dangerous voltages.

DANGER!

High electrical voltage!

Danger to life, danger due to electrical shock or serious personal injury!

The appropriate DIN, VDE, EN and IEC regulations as well as all national and local safety regulations and rules for the prevention of accidents apply for the assembly and maintenance of the system. The plant engineer or the operator is responsible for compliance with these regulations:

Before switching on the device, install the appropriate covers and protections against accidental contact. Rack-mounted devices must be protected against accidental contact by means of a housing, e.g. a switch cabinet. The regulations VGB4 must be complied with!

Always connect the ground conductor of the electrical equipment and devices securely to the mains supply. Due to the integrated line filter the leakage current exceeds 3.5 mA!

Comply with the minimum copper cross-section for the ground conductor over its entire length as per EN 60617!

Prior to the initial operation, even for short measuring or testing purposes, always connect the ground conductor of all electrical devices as per the terminal diagram or connect it to the ground wire. Otherwise the housing may carry high voltages which can cause electrical shock.

Do not touch electrical connections of the components when switched on.

Prior to accessing electrical parts carrying voltages exceeding 50 V, disconnect the device from the mains or power supply. Protect it from being switched on again.

For the installation the amount of DC bus voltage must be considered, particularly regarding insulation and protective measures. Ensure proper grounding, wire dimensioning and corresponding short-circuit protection.

The device comprises a rapid discharge circuit for the DC bus as per EN60204 section 6.2.4. In certain device constellations, however, mostly in the case of parallel connection of several servo drive controllers in the DC bus or in the case of an unconnected brake resistor, this rapid discharge may be rendered ineffective. The servo drive controllers can carry voltage until up to 5 minutes after being switched off (residual capacitor charge).

2.4.4 Protection against Electrical Shock by Means of Protective Extra-Low Voltage (PELV)

All connections and terminals with voltages between 5 and 50 V at the servo drive controller are protective extra-low voltage, which are designed safe from contact in correspondence with the following standards:

International: IEC 60364-4-41

European countries within the EU: EN 50178/1998, section 5.2.8.1.

DANGER!

High electrical voltages due to wrong connections!

Danger to life, risk of injury due to electrical shock!

Only devices and electrical components and wires with a protective extra low voltage (PELV) may be connected to connectors and terminals with voltages between 0 to 50 V.

Only connect voltages and circuits with protection against dangerous voltages. Such protection may be achieved by means of isolation transformers, safe optocouplers or battery operation.

2.4.5 Protection against Dangerous Movements

Dangerous movements can be caused by faulty control of connected motors, for different reasons:

- Improper or faulty wiring or cabling
- Error in handling of components
- Error in sensor or transducer
- Defective or non-EMC-compliant components
- Error in software in superordinated control system

These errors can occur directly after switching on the device or after an indeterminate time of operation.

The monitors in the drive components for the most part rule out malfunctions in the connected drives. In view of personal protection, particularly the danger of personal injury and/or property damage, this may not be relied on exclusively. Until the built-in monitors come into effect, faulty drive movements must be taken into account; their magnitude depends on the type of control and on the operating state.

DANGER!

Dangerous movements!

Danger to life, risk of injury, serious personal injuries or property damage!

For the reasons mentioned above, personal protection must be ensured by means of monitoring or superordinated measures on the device. These are installed in accordance with the specific data of the system and a danger and error analysis by the manufacturer. The safety regulations applying to the system are also taken into consideration. Random movements or other malfunctions may be caused by switching the safety installations off, by bypassing them or by not activating them.

2.4.6 Protection against Contact with Hot Parts

DANGER!

Housing surfaces may be hot! Risk of injury! Risk of burning!

Do not touch housing surfaces in the vicinity of heat sources! Danger of burning!

Before accessing devices let them cool down for 10 minutes after switching them off.

Touching hot parts of the equipment such as the housing, which contain heat sinks and resistors, may cause burns!

2.4.7 Protection during Handling and Assembly

Handling and assembly of certain parts and components in an unsuitable manner may under adverse conditions cause injuries.

DANGER!

Risk of injury due to improper handling! Personal injury due to pinching, shearing, cutting, crushing!

The following general safety notes apply:

Comply with the general setup and safety regulations on handling and assembly.

Use suitable assembly and transportation devices.

Prevent incarcerations and contusions by means of suitable protective measures.

Use suitable tools only. If specified, use special tools.

Use lifting devices and tools appropriately.

If necessary, use suitable protective equipment (e.g. goggles, protective footwear, protective gloves).

Do not stand underneath hanging loads.

Remove leaking liquids on the floor immediately to prevent slipping.

ື່ງ

႞

3 General Information on the Parameterisation Program Metronix ServoCommander[™]

3.1 Basic Information

Metronix ServoCommander[™] allows the parameterisation of the ARS 2000 series servo controller. Users already familiar with the parameterisation program WMEMOC 3.5 Gamma, will easily work with the Metronix ServoCommander since the user interface design as well as many functions are similar.

The information contained in this manual refers to the following firmware and hardware versions:

- Servo positioning controller ARS 2000 firmware versions up to 3.5
- ◆ Parameterisation software Metronix ServoCommander[™] version up to 2.8

If not explicitly documented, functions available in older versions are also avilable in new versions.

The firmware of the servo positioning controller ARS 2000 and the parameterisation program Metronix ServoCommander[™] must be harmonised, i.e. functional extensions of a new firmware usually also require the corresponding new version of Metronix ServoCommander[™].

The parameterisation program Metronix ServoCommander[™] cannot be used to parameterise devices of the following series: DIS-2, IMD/F, ARS-310 or ARS-560!

3.2 Metronix ServoCommander[™] Features

The parameterisation program Metronix ServoCommander[™] can be used to optimally adapt the servo positioning controller ARS 2000 to your applications.

The parameterisation program offers the following features:

- Parameterisation of the servo positioning controller ARS 2100 and ARS 2300
- Configuration of all parameters via PC
- Display of operating parameters
- User-assisted commissioning
- Loading of new firmware versions
- Loading and storing of parameter sets
- Printing of parameter sets
- Offline parameterisation
- Oscilloscope functions
- Language support: German, English, French, Spanish
- ✤ Windows[®]-based application
- Online help

3.3 Hardware and Software Requirements

Requirements for the installation of the parameterisation program:

- IBM-compatible PC-AT, Pentium processor with minimum 32 MB RAM and minimum 200 MB of free hard disk space
- Operating system Windows[®] 95, Windows[®] 98, Windows NT[®], Windows 2000 or Windows[®] XP
- CD-ROM drive or floppy disk drive
- One free serial port

Some languages (e.g. Chinese) need a special font (Arial Unicode MS). This font has to be selected for all display elements in the system configuration of your computer.

3.4 Using the Parameterisation Program

3.4.1 Standard Buttons

If a Metronix ServoCommanderTM window is open, this window will have a button bar, which often looks like this:

The buttons have the following functions:

OK: All changes will be accepted and the window will be closed.

<u>Cancel</u>: All changes will be undone and even already transferred values will be restored and the window will be closed.

Help: Opens a help menu, which provides information on the currently open window.

To actuate a button, click on it with your left mouse button or press the TAB key to activate it and then press the ENTER key to acknowledge. If the appearance of the buttons in some menus differs from the form described here, you will find more detailed information in the manual or the online help.

3.4.2 Numerical Input Fields

Many windows of the parameterisation program Metronix ServoCommander[™] contain fields for numerical entries similar to the one shown below:

10	00,000 rpm	
◀		•

There are several ways of entering data:

1. Directly via the keyboard: Enter the value directly in the entry line. As long as the entry is not finalised, the text will appear in a thin font and has not yet been accepted by the parameterisation program (see illustration).

To finalize the entry, press ENTER or move on to another input field by pressing TAB. The numeric value will then appear in bold.

- 2. Clicking on the arrow buttons: The value will change in small increments. (fine adjustment)
- 3. Clicking on the scroll bar between the gray scroll box and the arrow buttons: The value will change in large increments. (coarse adjustment)

4. Clicking on the gray scroll box and moving it with the mouse while pressing the left mouse button: The value can be easily set within the entire value range.

3.4.3 Control Elements

Guiding the user is preferred by graphically orientated windows.

The following table shows and describes the control elements used in the individual windows:

Table 3:Control elements

Control Element	Name	Description
	Check box	An option, which the user can activate or deactivate by checking the corresponding box. It is possible to check several boxes at once.
\odot	Radio button	With this button the user can choose one of several options.
Einstellungen	General button	A button, which opens another menu or initiates an action when clicked on by the user
	"" button	A button, which opens another window when clicked on by the user

3.4.4 Display of Setpoints and Actual Values

As compared to WMEMOC, the parameterisation program Metronix ServoCommander[™] uses a modified concept for displaying setpoints, corresponding to a desired user value, and the actual values used by the device.

The new mode of operation is the following:

- 1. The user changes the value in the input field by moving the scroll box on the scroll bar or by directly entering a new value.
- 2. Metronix ServoCommander[™] transfers this value to the servo positioning controller ARS 2000.
- 3. Metronix ServoCommander[™] immediately reads the currently valid parameter and displays it in the green field. The input field itself remains unchanged.

Speed controller		
Controller type C P-controller FI-controller (recon	nmended)	
Gain:	1,00	1,00
Time constant:	2,01 ms	2,0 ms
Speed filter:	0,40 ms	0,4 ms
	<u>C</u> ancel	<u>H</u> elp

ົງ

Definition of terms:

- Setpoint: Target value transferred to the servo positioning controller ARS 2000 (setting desired by the user).
- Actual value: This value is currently effective in the servo positioning controller ARS 2000. A deviation from the setpoint can have different reasons.

Examples:

- > Quantisation effects, truncation effects, etc.
- The changed parameter only has an impact after saving followed by a reset
- > Temporary value range overrun, e.g. rated current > maximum current
- Wrong value ranges, e.g. during loading of a parameter set from a servo controller with a higher class of performance (rated current > device's rated current)

The idea behind the concept of different setpoints and actual values is the following: It is possible to load a parameter set from a servo controller of one class of performance to a servo controller of a different class of performance and back again. As long as no other parameterisation has been carried out, the setpoints remain <u>unchanged</u>. Only the actual values will be different due to the different classes of performance. This prevents a step-by-step change of a parameter set resulting from the device's class of performance.

3.4.5 Standard Windows

The default configuration always opens the Commands window, the Status window and the Actual values window.

The Actual values window displays the current controller parameters such as currents, speeds, etc. The Actual values window is configured via the menu option Display/Actual values. All values to be displayed must be checked. With the options Enable all or Disable all the Actual values window can be quickly minimised or maximised.

0,000
0,000
-0,01 A
36,28 *

3.4.6 Directories

The installed version of Metronix ServoCommander[™] uses the following directories:

Directory	Contents	
cam	Default directory for the tables of CAM and axis error compensation.	
DCO	Default directory for the parameter files	
documentation	Directory of the supplied documetation in a PDF file format	
EDS	EDS-files for the application of the servo positioning controllers in a CANopen network. The EDS-files are also used by the PDO configuration menus.	
FIRMWARE	Firmware versions of the different types of devices	
PROFIBUS	GSD file, example projects for SIEMENS S7 with function and data modules	
Tools	Tools for the application of the Ethernet technology module.	
TXT	Default directory for plain text output of parameter data	

3.4.7 Communication via communication objects

The parameterisation program Metronix ServoCommander[™] accesses the servo positioning controller ARS 2000 by means of so-called communication objects via a standardised, internal software interface. During the processing of the communication tasks, an internal check for the following errors will be performed:

- Write access to read-only communication objects
- Read access to write-only communication objects
- Overshooting or undershooting of the value range
- Erroneous data transfer (wrong check sum)

The first two cases are fatal errors, which should not occur in practice. In the case mentioned last, Metronix ServoCommanderTM tries to perform the read or write process without bit error.

Overshooting and undershooting of the value range of a communication object are indicated by a warning.

4 Installation, First Program Start and Communication

4.1 Installation from CD-ROM

To install from CD-ROM proceed as follows:

- 1. Insert the CD-ROM into the CD-ROM drive of your computer.
- 2. Start Windows[®]-Explorer.
- 3. Go to the directory DEUTSCH or ENGLISH on your CD-ROM.
- 4. Start the program by double-clicking on SETUP.EXE.

The installation program creates a new program group named "ServoCommander". Complete and successful installation will be indicated by a corresponding window.

4.2 Configuring the Communication (RS232)

The parameterisation program Metronix ServoCommander[™] provides two communication paths to the servo positioning controller ARS 2000:

- Communication via serial port (RS232)
- Communication via UDP (Ethernet)

The communication via UDP needs for an Ethernet module in technology slot 1. First this has to be parameterized correctly which is normally done via RS232. Hence, the following chapters describe the communication via RS232 first. *Chapter 8.2* describes the communication via UDP (Ethernet).

Communicating via RS232 the parameterisation program needs to know which serial interface (COM port number) and which transmission rate to use.

The default configuration at the time of delivery is:

- Interface COM1
- Transmission rate 9600 Baud (default configuration of servo controller)
- 8 data bits, 1 stop bit, no parity check. <u>This configuration cannot be changed!</u>

Once started, the program tries to establish communication via RS232 with a servo positioning controller. If this fails, Metronix ServoCommanderTM will display an error message (see Chapter 4.4, Page 32).

In order to set the data for communication via RS232 correctly, the following steps must be completed:

- 1. Connect the servo positioning controller ARS 2000 completely.
- 2. Connect a free COM port of the PC with the servo positioning controller ARS 2000 using a null modem cable.
- 3. Switch on the servo positioning controller ARS 2000.
- 4. Run the parameterisation program Metronix ServoCommander[™].

If the "RS 232"-button in the toolbar is green (see illustration), the communication parameters are correct.

🍧 Me	Metronix ServoCommander Vers. 2.2						
<u>F</u> ile (Operating	<u>m</u> ode	<u>D</u> isplay	<u>P</u> arameters	Error	Options <u>H</u> e	lp
-	*		*	<mark>RS 232</mark>	UDP	Offline	₽

If an error message appears instead, please read Chapter 4.3 Configuration of the Serial Interface (Page 31) and Chapter 4.4 Troubleshooting Serial Communication Problems, (Page 32).

4.3 Configuration of the Serial Interface

If the parameterisation program Metronix ServoCommanderTM cannot open the serial interface, the following error message will appear as you run the program:

or the mouse a	accesses this port.	
lease terminate this application or choose another COM-Port.		
f you want to choose "Offlin	change parameter files without any servo controller, please e-Parameterisation"	
 Retry with 	h old parameters (COM1, 115200 Baud)	
C Change COM-Port		
C Offline-parameterisation		
C Activate UDP communication (ethernet)		
- Hourde		
C Exit progr	am	

This can be due either to a wrong interface setting (mostly mouse driver setting) or another Windows[®]- or MS-DOS[®]-based program accesses this serial interface.

To solve this access conflict, close the other programs (in the case of MS-DOS[®]-based programs also close the shell!) and then click on **Retry with old parameters**.

To correct the interface configuration, click on the radio button **Change COM-Port** and follow the instructions. (Please refer to *Chapter 13.18.1, Page 191*).

Offline-parameterisation is not a suitable option for commissioning. You find further information in *Chapter 9.2.*

Die Option **Activate UDP communication (Ethernet)** is also not a suitable option for commissioning. You find further information in *Chapter 8.2*.

Clicking on the radio button Exit program will immediately terminate Metronix ServoCommander[™].

4.4 Troubleshooting Serial Communication Problems

If the parameterisation program Metronix ServoCommander[™] cannot establish communication with the servo positioning controller ARS 2000 via RS232, the following error message will appear:

No communication / communication error at serial port (COM1:)		
Please connect servo and computer with a null-modem-cable and switch on 24V supply voltage of the servo controller!		
choose "Offline-Parameterisation"		
Retry with old parameters (COM1, 115200 Baud)		
C Change COM-Port		
O Search Baudrates		
O Offline-parameterisation		
C. Firmware download		
O Activate UDP communication (ethernet)		
© Exit program		
√ 0K		

The following table describes possible error causes and error recovery strategies:

Table 5: Recovering problems with serial communication

Cause	Measure
Communication is 'choking'	Click on Retry with old parameters.
Wrong Com port selected	Click on Change COM-Port and follow the instructions.
Baud rates of parameterisation program Metronix ServoCommander TM and servo positioning controller ARS 2000 do not match	Click on Search Baudrates.

Cause	Measure
Servo positioning controller ARS 2000 communication malfunction	RESET the servo positioning controller ARS 2000, and then click on Retry with old parameters.
Servo positioning controller ARS 2000 has no or incomplete firmware.	Select Firmware download option and follow the instructions.
UDP-communication is desired instead of RS232-communication	Select the option Activate UDP communication (Ethernet) . (See also <i>Chapter 8.2</i>).
 <u>Hardware error:</u> Servo positioning controller ARS 2000 switched off Connecting cable not plugged in 	Recover the error, and then click on Retry with old parameters .
Connecting cable broken	
 Connecting cable too long 	Reduce the baud rate or use a shorter cable.

Offline parameterisation only makes sense, if you want to edit parameter set files without the servo positioning controller ARS 2000. (Please refer to *Chapter 9.2, Page 96*).

4.5 **Optimizing of serial communication**

The default transmission rate of the servo controller is 9600 Baud (RS232). This baud rate can be increased in the menu option <u>Options/Communication/Communication parameters</u> **RS232/<u>B</u>audrate...** based on the current transmission rate.

Baud rate		
Actual data transfer rate:	115200 Baud	
Preferred data transfer rate:	115200 Baud	
	9600 Baud 19200 Baud	
✓ <u>O</u> K X Cancel	38400 Baud 57600 Baud 115200 Baud	

The **Preferred data transfer rate** is selected and Metronix ServoCommander[™] will try to establish communication at this baud rate. The desired transmission rate is then either accepted or the software switches back to a lower baud rate. The established baud rate is now shown as the **Actual data transfer rate**.

This baud rate applies for "normal" online communication. A special baud rate selection will be made for the firmware download.

5 Loading of Firmware and Performing Commissioning

5.1 Loading Firmware

The firmware is the "operating system" of the servo positioning controller ARS 2000. By default, the servo positioning controller ARS 2000 are delivered with firmware. However, the following circumstances may require the loading of new firmware:

Updating to a new firmware version: Due to continuous product developments, the parameterisation program Metronix ServoCommanderTM may comprise options, which require a correspondingly advanced firmware version. If the version of the firmware is too old compared to Metronix ServoCommanderTM, the following window appears:

Info	
Old firmware version 2.0 (KM-Release: 1.1) found! Actual version = 3.1 (KM-Release: 1.1) The parameterising program has features, which are not supported by this firmware.It is recommended to perform a firmware-update.	
Load actual firmware (recommended)	
Ignore (not recommended)	

Here, a firmware download is recommended! Choose the option Load actual firmware.

- Loading of a custom specific firmware: Here, start the download of the firmware from the main menu (see below).
- Incomplete firmware (e.g. due to an interrupted firmware download):
 If the servo positioning controller ARS 2000 has no firmware or just an incomplete version, the

following window will appear:

Here, a firmware download is absolutely required! The firmware download window will open automatically.

If the servo positioning controller already has the correct firmware, the upper given message windows do not appear. In this case, you can skip this chapter!

First, when starting the firmware download a window appears. Here, select the firmware file. The standard firmware is available for two different configurations:

- "Standard". The firmware files for these devices have no name suffix (e.g. ARS2000_3p4_1p1.MOT). These are the (single-phase supplied) devices ARS 2100 up to serial no. #999. Please contact the Technical Support for further information.
- Standard firmware for devices with integrated safe stop. The firmware files for these devices have the name suffix "_iS" (e.g. ARS2000_3p4_1p1_iS.MOT). These are all three-phase supplied devices ARS 2300 as well as the single-phase supplied devices ARS 2100 starting with the serial no #1000. These devices also have the [X3] connector on the front side. Please contact the Technical Support for further information.

Due to the different hardware configurations of the devices the corresponding firmware has to be loaded. Unsuitable firmware will cause the following message to be displayed:

The next window to appear is the window for selecting the transmission rate (baudrate).

Try a baudrate of 115200 Baud. If there are problems with the data transfer (error messages), you must reduce the baudrate.

The following message will appear after a successful firmware download:

If the firmware download was not successful, the message Error at firmware boot will be shown. In most cases this can be attributed to a communication error during the data transfer to the servo positioning controller ARS 2000. Repeat the procedure described above at a lower baud rate.

5.2 Commissioning

Commissioning is a feature to help users, who are no experts, with the initial operation of the motor / drive. The user is guided through several dialog menus, some of which use automatic identification mechanisms of the firmware.

Commissioning of the servo positioning controller is possible, when

- 1. the parameterization program Metronix ServoCommander[™] has been properly installed and
- 2. communication with the servo positioning controller ARS 2000 has been established

DANGER!

Carry out the steps for basic setting in the proper sequence shown in the manual! Noncompliance can damage the motor and/or the servo positioning controller!

The following steps and menus are part of the commissioning process:

- 1. Resetting of the commissioning information (recommended)
- 2. Inquiry: "Standard" drive or special motor?
- 3. Loading of a parameter set (optional)
- 4. General configuration
- 5. Display units
- 6. Input limits
- 7. I/O configuration
- 8. Motor data / motor selection
- 9. Safety parameters
- 10. PFC parameters
- 11. Temperature monitoring
- 12. Commutation encoder
- 13. Angle encoder settings / angle encoder indentification
- 14. Current controller settings / current controller identification
- 15. Limit switch settings
- 16. Parameterization of speed controller
- 17. Parameterization of position controller
- 18. Saving of parameter set in the servo positioning controller / as file

Most of the functional elements described in the following chapters are also available directly in the parameterization software via the menu bar.

5.2.1 Commissioning Warning

The parameterization program Metronix ServoCommander[™] detects a missing commissioning of the servo positioning controller. The following message will be displayed:

Info
This servo controller has not yet been parameterized (completely)! Do you want to start a first commissioning now?
First commissioning
Mark as "commissioned". Only for experienced users!
Ignore (not recommended)

Inexperienced users should at this point perform a commissioning. The following chapters explain how to proceed.

You can also commission an ARS 2000 series servo positioning controller which has already been in operation. To do so, select the menu option <u>File/Commissioning</u>.

If the default parameter set is stored in the EEPROM of the controller (default setting) the controller status is "not commissioned". In this case, the 7-segment display shows the letter "A". As soon as one of the windows relevant for commissioning (e.g. the menu for setting the angle encoder) is opened and a value is changed, the displayed letter "A" will disappear again.

5.2.2 Resetting of Commissioning Information

The commissioning status of the issues to be handled will be stored in the servo positioing controller in separate bits. They show, whether the corresponding function or setting has been put into operation or not. Therefore, if complete commissioning is desired, we recommend resetting the entire commissioning information first.

5.2.3 Inquiry Standard Drive or Special Motor

The menu-assisted commissioning procedure is optimized for motors with encoders that support commutation signal. So the first step is to determine the type of the encoder:

Config	uration
Plea	ise choose your motor.
۲	Servo motor with commutating generator
	—)-
C	Linear motor without commutating generator
	+
C	Torque motor without commutating generator
1	<u>√ о</u> к
194	

A menu-assisted commissioning procedure specifically adapted to linear motors or motors without a commutation encoder (e.g. some torque motors) is not supported in parameterisation software 2.7 and lower. Only a suitably preset parameter set can be loaded. If desired, the user can perform the remaining commissioning procedure and check or change parameters. Please select the appropriate configuration.

5.2.4 Loading of a Preset Parameter Set

The commissioning control now provides you with the following information:

First commissioning			
 Load parameter set General configuration Display units I/O Configuration Motor data Safety parameters PFC Temperature monitoring 	Load parameter set Did you get a diskette/file (*.dco) from your dealer with parameters for your drive? If Yes, click on "Next >>" else on "Skip"		
Commutating-encoder	Next >> Skin		
Angle encoder settings			
Offset, phase sequence	X Cancel ? Help		
Current controller			
Limit switch			
Speed controller			
Position controller			
Save parameter set			

You can access this menu option directly via <u>File/Parameter set/Open file</u>.

The following window will appear:

Load from harddisk / floppy disk		
Load from harddisk / floppy disk Data Comment File selection EXAMPLE_X2A.DCD EXAMPLE_X2B.DCD Device Communication Objects (*.dco) File description: Type of serve contro Motor type: Description: Description: Description:	C:\ C:\ Metonix bilderServoCommander deo	<mark>✓ DK</mark> <mark>★ <u>C</u>ancel ? <u>H</u>elp</mark>
Date:		

If you received a parameter set file for your drive from your sales partner, you can now load it:

- 1. Select the desired parameter set. Parameter sets have the extension *.**DCO**.
- 2. Click on **OK** to transfer the parameter set to the servo positioning controller ARS 2000.

Now, the parameter set is transmit to the servo positioning controller. A progress bar indicates the state of the transmission.

Depending on the contents of the *.DCO file, another commissioning is either necessary or just optional. We recommend performing a complete commissioning.

5.2.5 General Configuration

Outside of the commissioning procedure, the window can be opened via the menu **Parameters/Application parameter/General configuration**. The following window appears:

pplication	Configuration
rotary motion	Holding torgue compensation
C translatory motion	
Linear motor	Motor without commutating-generator
plarity	Further settings
positive	Gearbox display units
negative	Rotary axis
	Display units: R rpm rpm/s Settings

In the "commissioning" state, some window elements are blocked!

In the "Application" section the user can choose from a rotary application (display units in revolutions, degrees or radian) or a translatory application (display in distance units). The check box "Linear motor" can be selected as an option. As a result, the picture in the lower window pane changes. When using linear motors, make sure to select the check box "Motor without commutating-generator", see below.

The check box "Holding torque compensation" must be checked, in the case of permanent torque in either direction (e.g. weight in the case of a vertical axis.) In this case, the holding torque of a servo positioning controller of type ARS 2000 will be pilot-controlled when the holding brake is released during torque and position control or during positioning, in order to minimise the sagging of the axis due to its own weight. The ARS 2000 servo positioning controller automatically updates the required holding torque when the controller is enabled. As a result, possible load changes are continuously tracked. In the case of a controller enabling after the first activation of the holding torque compensation is not activated, the pilot-control is automatically set to zero.

In torque control mode, no holding torque is pilot-controlled.

General configuration		
Application C rotary motion translatory motion Linear motor	Configuration V Holding torque compensation Motor without commutating-generator	
Polarity	Further settings	
Positive	Feedconstant display units	
C negative		
	Display units: mm mm/s mm/s ²	
	Settings	
✓ <u>O</u> K X <u>C</u> ancel ? <u>H</u> e	lp	

The checkbox **Motor without commutating-generator** must be activated for all drives, where the connected angle encoder does not provide any commutation signals, e.g. linear motors. The checkbox also has to be selected if it is a rotary application which does not supply any commutation signals.

The section **Polarity** still has no function yet.

The appearance of the section **Further settings** depends on the application:

Rotary:	The button Gearbox display units opens the menu Display units , where you can enter values for your gearbox. (See also Chapter 5.2.6, Page 44).
	The button Rotary axis is used in case of presetting the positioning ranges and to set the behaviour of a positioning run in case of having such a rotary positioning range. (See also Chapter 5.2.6, Page 44).
Translatory:	The button Feedconstant display units opens the menu Display units , where you can enter values for your gearbox. (See also Chapter 5.2.7, Page46).

The field displayed in light blue shows the display units that are currently valid. Clicking on the button **Settings** ... will also open the window **Display units** (*Chapter 5.2.7*).

Settling time:	1,00 s
Search range:	20 °
Check threshold:	24,99 %
Search speed:	180,00 %s
Motor overspeed protection:	1000,00 rpm
Parameters only for motors wit Warning: Please change these	thout commutating generator. e parameters only if you are an experienced user!

These parameters are only valid for applications with encoders without commutation signals, e.g. linear motors.

Unfavourable settings may cause an unsuccessful automatic determination of the commutation position. So change these settings only if you are an experienced user or after consultation!

Motor overspeed protection

Protection against counting errors when applying pure incremental encoders. The method monitors the drive against "uncontrolled movements".

The mechanism of the motor overspeed protection depends on the operating mode:

Operating Mode	Mechanism
Torque control	Comparison to the actual speed value. There is no useful speed setpoint available.
Speed control Positioning	Comparison to the difference between speed setpoint and actual speed.

This parameter is <u>not</u> identical to the motor overspeed protection which is available by the menu **Parameters/Safety parameters...**

Mode

Before the first enabling after power-on of the servo positioning controller the commutation position has to be valid in order to ensure a correct commutation of the motor. This needs for the knowledge of

the encoder angle correlated to 1 revolution. This is not true for pure incremental encoder systems for example. For these configurations there are different methods for the determination of the commutation position during the first enabling. These methods differ from each other by the specifically required movement and its edge conditions, e.g. the physical attributes of the drive.

The user can set following methods:

Self adjustment method

This method moves the motor over twice the search interval. Depending on the initial position a jerky movement may occur at the beginning. Not suitable for horizontal applications.

Reaction method (recommended)

Suitable for horizontal and vertical applications without brakes. A small movability is sufficient for the determination of the commutation position (virtually without movement).

Saturation method

This method is not suitable for ironless motors. Furthermore it requires a locked motor as there is not any movement allowed during the determination of the commutation position (without movement). Suitable for horizontal and vertical applications.

Each mode requires appropriate process parameters. Only the relevant parameters are displayed on the surface.

Self adjustment method

Settling time:	1,00 s 1,00 s
Search range:	20 °
Check threshold:	24,99 % ◀ ►
Search speed:	180,00 °/s

Settling time

Wear off delay of transients of e.g. the motor current, the mechanical start-up movement into the commutation position etc. Adapt this parameter to the particular inert mass of your application.

Search range

The search range determines the (electrical) angular range which the commutation angle covers during the determination of the commutation position.

Check threshold

The mechanical position must follow at least for this part of the search range. Due to pure setting of the commutation angle (no position control) the mechanical position may not change by the same absolute value e.g. due to cogging torques. Among others the check threshold serves for the detection of a mechanical end stop.

Example: The mechanical position must follow by at least 30° for a search range of 60° and a check threshold of 50 %.

Search speed

Angular velocity of the commutation angle over the search range. Adapt this parameter to the particular inert mass, cogging torques etc. of your application.

Reaction method, Saturation method

Scaling test current

If the application tends to oscillations, the current may need to be reduced when applying the reaction method. Otherwise the result is invalid and leads to an error message (35-5). If an error occurs during the identification process, the current should be reduced in a stepwise manner.

LED "Commutating position valid"

The LED indicates the successful evaluation of the commutating position. The status is cleared e.g. if an encoder error occurs. This signal is only relevant for drives with encoders without commutating signals

Reset

This button serves as a help during the first commissioning process. If the drive is adapted to the application for the first time, the adaptation of the parameters can be eased. By resetting the "Commutating position valid" status the identification process will be started again if the drive is enabled. So the identification process can be repeated in a controlled manner.

5.2.6 Rotary axis operation

Rotary axis applications can be activated in this menu. Such axes are used in case of having a rotation plate or turning arrangement for instance.

In an rotation plate application the actual position is restricted artificial to a certain interval. If the boundaries are reached on the right hand side it passed to the left maximum position and vice versa.

lode	
inactive	
shortest distance	
Direction from posi	ition set
Direction always p	ositive
Direction always n	egative
ange limits	
rom	to
-2147483648,00 r undachsmodus Sync	2147483648,00 r
-2147483648,00 r undachsmodus Sync `inactive `active	2147483648,00 r
-2147483648,00 r undachsmodus Sync ` inactive ` active ange limits synchror	2147483648,00 r hronlage
2147483648,00 r undachsmodus Sync inactive active ange limits synchror rom	2147483648,00 r chronlage
-2147483648,00 r undachsmodus Sync inactive active	2147483648,00 r

In the modes area of the rotary axis menu the following items are given:

- 1. inactive: The rotary axis is not active. The limitation does not happen.
- shortest distance: The rotary axis is active. In case of positioning mode the shortest distance is used for travelling to the next target position. In case of having a rotary axis in the range of 0 ..5R and the actual position is 4.5R, a positioning run to 0.5R happens in positive direction because this is the shortest distance to the target.
- 3. Direction from position set: The rotary axis is active. The direction of the movement is taken from the positioning set. (See also chapter 11.3.4.1.3, on page 126).
- 4. Direction always positive: The rotary axis is active. The positive direction is always taken during positioning runs
- 5. Direction always negative: The rotary axis is active. The negative direction is always taken during positioning runs

The area range limits is given to set the interval for limiting the actual position.

The lower limit is included in the interval and the upper limit is not included . This is for easily adjust the ranges of the rotary axis. Example: A rotary axis for exactly one revolution should be defined: A wrong set-up is : start = 0 R, end = 0,99999 R The right set-up is: Start = 0 R, end = 1 R

Activate or deactivate a rotary axis functionality in the field **Rotary axis mode Synchronous position**. This can be separately applied for the selected synchronous position independently from the ranges set for the standard rotary axis functionality resp. its mode. So, master position (synchronous position) and slave position may use different position ranges.

Set the interval for the limitation of the synchronous position in the field **Range limits synchronous position**. The interval limits the numerical range of the position values. The current position value automatically switches over to the opposite if it exceeds one limit.

	A ro with	otary axis set-up has advantages in case of a given turning arrangement in addition n course programs and position triggers.
-	The	e following advantages are given:
	*	No added position shift in case of continuous strokes in the same direction (A gear factor with integer ratio is necessary to reach this).
	*	By use of a course program a stepping for clamping or relaxing of parts on the turning arrangement can be implemented
•	*	Position trigger can be used for flagging certain positions or index points around the turning arrangements circumference
	*	Reduction of programming effort on the superposed PLC

5.2.7 Configuration of Display Units

As the configuration of the display units is a complex subject, only the basic principles will be discussed in this section. For a detailed description, please refer to *Chapter 7 Display units* (details), *Page 83*.

Outside of the commissioning procedure, the window can be opened via the menu **Options/Display units**. The following window appears:

Display unit		Gearbox ✓ with gear Ingoing shaft: 1 Outgoing shaft: 1 Speed ○ rpm ○ R/s Acceleration ○ rpm/s ○ R/s²	✓ <u>OK</u> X <u>Cancel</u> ? <u>Help</u>
Revolut	rotatory >> translatory	Display units: R rpm rpm/s	

In the "commissioning" state, some window elements are blocked!

In the section **Display mode** the display units can be set "roughly". The mode **Standard values** covers 90 % of all applications. The modes **User-defined** and **Direct input** are explained in *Chapter 7*, *Page 83*.

5.2.7.1 Rotary Operation

The following is possible for rotary systems:

- Positions in revolutions, degree or radian
- Speed in [position units]/s (*)
- Acceleration in [position units]/s² (*)

(*): In "Revolutions" mode, the following combinations of speed and acceleration are possible:

Table 6: Display units Rotary operation

Combination	Position	Speed	Acceleration
1.	R	RPM	RPM/s
2.	R	RPM	R/s ²
3.	R	R/s	R/s ²

In rotary mode you can enter a gearbox, if you want to set your application on the output side. To do so, select the checkbox **with gear**.

Gearbox	
🔽 with gear	
Ingoing shaft:	5
Outgoing shaft:	1

5.2.7.2 Translatory Operation

The following is possible for translatory systems:

- Positions in distance units (m, mm, μm)
- Speed in [distance units]/s
- Acceleration in [distance units]/s²

In the translatory mode, you need to define which distance unit corresponds to one motor revolution. This value has to be entered into the **Feed constant** field.

Translatory application	
Feed constant	
23,600000000	
mm per rotation	

5.2.7.3 Other Possible Configurations

In the section **Display units** the appropriate units can be selected (rotary or translatory mode). If you want to change the default setting, click on the button **rotary** >> **translatory** or **translatory** >> **rotary**.

You can define whether you want torques to be displayed in A or Nm. For Nm select the checkbox **Torque in Nm**. This requires a correct conversion constant (A \rightarrow Nm). You can set the conversion constant by clicking on the button **Factor**.

On the **Decimals** tab you can select, how many decimals are to be displayed for position, speed and acceleration values.

Position		
Decimals	3	3 Heeb
Speed		
Decimals	3	
Acceleration		
Decimals		

The tab **Direct input** is explained in *Chapter 7.2 Page 85*.

5.2.7.4 Quitting the Menu (Applies only to Commissioning)

If you quit the menu during commissioning, the program will display the following question:

Click <u>Yes</u> to open the window Input limits (see Chapter 5.2.8, Page 48).

5.2.8 Configuration of Input Limits

Select Options/Input limits to open the following window:

Torque values Maximum torque value to be set:	5,00 Nm	✓ ×	<u>O</u> K <u>C</u> ancel
Maximum torque slope to be set:	100000,00 Nm/s	?	<u>H</u> elp
Speed values]	
Maximum velocity to set:	3000 rpm		
Maximum acceleration to set:	200000 rpm/s		
aution! These input limits on ervoCommander input windo arameters are not limited aut	ly refer to ws! Already entered tomatically!		

Enter the maximum speeds and accelerations you expect for your application. Metronix ServoCommander[™] uses these inputs for the display of the input boxes.

5	*	The input limits can be modified at any time.
Ц	*	The input limits only affect the input fields of the parameterisation program!
	*	Speeds and accelerations will not be physically limited!

5.2.9 IO Configuration

The menu **<u>Parameter/IOs/IO</u> configuration** opens the following window:

I/O Configu	ation
Overview	Options
	Analogue inputs
	Use AIN 1 as digital input DIN AIN 1
	Use AIN 2 as digital input DIN AIN 2
	Digital outputs
	Use DUUT 2 as digital input DIN TU
	Use DOUT 3 as digital input DIN 11
<u> </u>	X Cancel ? Help

You can configure four additional digital inputs (if required) in this menu. The following variants are possible:

- Analogue input AIN1 can be used as a digital input
- Analogue input AIN2 can be used as a digital input
- Digital output DOUT2 can be used as a digital input
- Digital output DOUT3 can be used as a digital input

Click on the **Overview** tab to view the current configuration of the inputs and outputs.

5.2.10 Motor Identification via List

As part of the commissioning process the motor specifications must now be determined. This function can also be accessed via **<u>Parameters/Device parameters/Motor data/Select new motor</u>**. A list will be shown, from which you can select the motor you are using:

Motor selection		
SBL3-0250-30-1/X		-
Motor data:		
Nominal current, rms value:	2,80 A	
Maximum current, rms value:	5,60 A	
Maximum speed:	12000 rpm	
Torque constant:	0,83 Nm/A	
Pole number:	6	
Encoder connection:	X2B	
Offset of encoder:	-49,5*	
Sense of rotation:	left	
Digital temperature control:		
Analogue temperature control:		
Accept values and cle	ose dialog	
X Quit without cha	nges	

Select the motor if you can find it in the list and click on **Accept values and close dialog**. Otherwise click on **Quit without changes**. The specifications are then queried directly (see next *Chapter 5.2.11*).

5.2.11 Configuration of motor specifications

5	This wind
Ц	the list.

This window only opens during the commissioning, if the motor was not selected from the list.

(A similar function is also accessible via the menu **Options/Device parameters/Motor data**, see *Chapter 13.6, Page 162*).

During commissioning, the following window appears, where you can enter the maximum and nominal currents of the motor used as well as the torque constant:

Motor data			
Se	elect new motor		✓ <u>о</u> к
Limit value			X Cancel
Maximum current in A, rms value:	3,10 A	3,10 A	<u>? H</u> elp
Nominal current in A, rms value:	2,29 A	2,29 A	
l²t-time:	3,0 s	3,0 s	
The maximal current limits of power stage!	depend on the cloc	k frequency of the	
	Pow	er stage	
Number of poles 4 👤	= 2 pairs		
Auto detec	t		
Torque constant	1,00 Nm/A		

Enter the specifications from the type plate. You can calculate the torque constant from the quotient of rated torque / rated current.

Note that the values to be entered for the maximum current and the rated current are RMS-values! Excessive currents will destroy the motor, since the permanent magnets inside the motor will be demagnetised. Therefore the limits of the RMS-current range provided by the manufacturer must not be exceeded.

The maximum current limits depend on the clock frequency of the output stage. It can be selected via the **Power stage** button (see also *Chapter 13.7 Page 163*).

The **I**²**t-time** is identical to the intervall, in which the i²t-value rises to 100 %. The I²t value describes the current load of the servo positioning controller. The I²t increases when the current setpoint is higher than the nominal current. The value decreases when the current setpoint is lower than the nominal current. When the I²t value reaches 100 %, the current setpoint will be limited to the nominal current value. This limitation remains active until the I²t integral has reached 0 % once.

5.2.12 Safety Parameters

This menu is used to set safety parameters.

|--|

Outside of the commissioning procedure, the window can be opened via the menu **Parameters/Safety parameters**.

ecelerations		Torque limitation by:	
Quick stop	14100 rpm/s	Maximum	current
HW limit switch	2000000 rpm/s	Setpoint :	selection
		Speed limitation	
ositioning range xceeded (only in peration mode	200000 rpm/s	Speed limit, positive	3000 rpm
oositioning')		Speed limit, negative	-3000 rpm
Dverride	100 %	Thread speed	
		Shutdown level of follow	wina error
lotor overspeed rotection	6000 rpm	Shutdown at:	0,50 R
		Absolute positioning ran	ige
Encoder difference	e control	-536870912,000 R	536870911,000 R
		Settin	igs

The deceleration of the drive under different conditions can be set in the **Decelerations** section.

Override: In the positioning mode, the driving speed of a running positioning run which is predefined by the positioning control system is also determined by a factor (override). Thus, the cyclic calculation takes into consideration the driving speed stored in the position set multiplied by the override. The override applies to all position sets and is also used during the homing run. If it has a value of 100 %, is has practically no effect.

The override is mainly used by field bus systems which overwrite this value cyclically. It can also be useful for start-up. It can be used to temporarily reduce the driving speed of all position sets without having to change every single position set individually.

The override will not be saved. Following a reset, it is automatically set to 100 %.

Motor overspeed protection: If the current speed exceeds the value stated in this field, error number 10 "overspeed (spinning protection)" will be issued.

Encoder difference control: This option is useful, if the encoder for the actual position differs from the encoder for the speed and commutation information. With this parameter you can set a maximum position difference value which may occur between these two encoders. If the value is exceeded, an error will be generated.

Torque limitation by: The maximum torque (or the maximum current) of the application can be limited by:

- The setting of the motor currents: Click on the Maximum current button to open the Motor data menu (see Chapter 5.2.11, Page 51).
- An explicit setpoint limitation. Click on the Setpoint selection button to open the corresponding menu (see Chapter 6.4, Page 69).

Speed limitation:

Speed limit, positive: Here you can enter the maximum positive speed of your application. The effective speed limit, however, depends on the settings for the **Override** and for the **Thread speed** (please refer to the corresponding sections).

Speed limit, negative: Here you can enter the maximum negative speed of your application. The effective speed limit, however, depends on the settings for the **Override** and for the **Thread speed** (please refer to the corresponding sections).

Thread speed: In set-up mode, the maximum admissible speed setpoint is symmetrically decreased to a percentage value (0..100 %) of the maximum speed. For this process, the smaller value of the negative or positive speed limit will be used (see right hand box of the menu). In the operating mode speed control the speed setpoint is directly limited to this **Thread speed**. In the operating mode positioning the set-up modes even has effect on the positioning control. The profile velocity will be decreased so that a setpoint reserve (5 %) remains for the speed controller.

Example:

Positive speed limit	4900 rpm
Negative speed limit	4000 rpm
Thread speed	10 %
Operating mode speed control:	
Maximum speed for set-up mode active	e = 4000 U/min * 10 %
	= <u>400 U/min</u>
Operating mode position control:	
Maximum profile velocity of a positionin	g for set-up mode:
	= (4000 rpm * 10 %) - 5 % (setpoint reserve)
	= 400 rpm * 0,95

= <u>380 rpm</u>

The set-up mode is activated by a digital input (see also Chapter 13.9, Page 172).

The **Shutdown level of the following error** can deactivate the drive if the set position and the actual position differ from each other by an amount greater than the threshold value. The reaction has to be parameterised accordingly in the error management system.

The **Settings** button the in the **Absolute positioning range** section leads you to the menu **Global Positioning Settings** (see *Chapter 11.3.4, Page 122*).

5.2.13 PFC (Power Factor Control)

This menu is used to activate or deactivate the Power Factor Control (PFC) for single-phase ARS 2100 devices. The menu can also be opened via **Parameters/Device parameters/PFC**.

PFC
Power Factor Control
V OK X Cancel ? Help

In stationary mode, PFC ensures the intake of a sinusoidal mains current. As a result, the relevant ENstandard (mains harmonics) are complied with. In addition, the higher DC-link voltage is a power reserve for your drive. PFC cannot be used in the following cases:

- You operate the servo positioning controller with a DC-link or
- the motor is not designed for the higher DC-link voltage.

5.2.14 Temperature Monitoring

This menu is used to adjust the temperature monitoring system. The menu can also be opened via **Parameters/Device parameters/Temperature monitoring**. Please state whether you are using an analogue or a digital temperature sensor.

		Temperature monitoring	
		Motor temperature analogue (X2A or X2B)	
		Туре	Generic type (linear)
		Warning threshold motor temperature	80 °C
Temperature menitoring		Overtemperature motor	100 °C
Motor temperature		Short circuit monitoring	10,00 Ω
☐ analogue (X2A or X2B)	KTY 81	Vire break monitoring	20000,00 Ω
Threshold temperature	99,8 °C	digital (Motor connector X6)	
(Motor connector X6)	 C Normally closed C Normally opened 		Normally closed Normally opened
✓ <u>O</u> K X <u>C</u> ancel		✓ <u>O</u> K <u>X</u> encel	

As of product step 3.5 (firmware) the user can also parameterize resp. select a non-linear characteristic with up to 10 interpolation points for analogue motor temperature sensors. The appropriate extended representation illustrates the figure on the right. The interpolation points for temperature and the corresponding resistance are displayed by a separate window. The pull down menu for **Type** offers the following varieties:

- Generic type (linear): Enter the values for the resistance at 25 °C and 100 °C via the command button "...".
- Vishay compatible: The data of the characteristic are displayed when clicking onto the command button "...".
- Generic type (non linear): Enter or modify the data of the characteristic by clicking onto the command button "...".

Set the threshold temperature for generating a reaction in order to activate an analogue motor temperature monitoring.

As of product step 3.5 (firmware) the following additional monitoring functionalities may also be activated and set:

- Field Warning threshold motor temperature: Enter the threshold as of which the system shall detect a motor overtemperature.
- Field Short circuit monitoring: Enter the lower threshold of the value of the temperature sensitive resistor. For detected resistances below this value the servo positioning controller signals a short circuit.
- Field Wire break monitoring: Enter the upper threshold of the value of the temperature sensitive resistor. For detected resistances above this value the servo positioning controller signals broken wire.

In the case of digital temperature sensors, you have to state whether it is an normally closed or a normally opened contact.

5.2.15 Commutation Encoder

This menu is used to define the input through which the servo positioning controller is supplied with its commutation information. This menu can also be called up via **Operating mode/encoder selection**.

State the connection through which encoder the commutation information and the actual speed value is to be provided.

Actual values - selector			
Actual position value	Setpoint - selector Controller overview	PWM	Drive and encoder
X2B 💌	X2B Y Settings	X2B (Encoder) Settings	•

The actual value selection defines the encoder signal for feedback. The signals X2A, X2B and X10 are available. An angle encoder is assigned to these signals in the angle encoder menu (**Settings** button). You can select an extra encoder for the evaluation of the actual position value as well as the synchronization. For this, see *Chapter 12, Page 135*.

The selected configuration is shown in the form of an overview.

The setpoint selector and the controller overview are provided in the form of buttons used to activate the corresponding dialogs.

You can use the buttons to open quickly open associated menus (e.g. setpoint selection). This option is blocked during commissioning.

5.2.16 Configuration of the Motor Feedback

The menu is skipped during commissioning, if a resolver (X2A) is used as commutation encoder.

Further information concerning the angle encoder has to be entered if a commutation encoder is connected to X2B. Use this menu. The menu may also be opened by **Parameter/Device parameters** /Angle encoder settings/X2B. Select the connected encoder by clicking onto the button Encoder >> Servo. If the encoder is not included in that listing, set the encoder by clicking onto the button Edit. Following, the menu is explained in detail:

Angle encoder settings	
Commutating-encoder X2A X2B X10	
×28	
active	X Lancel ? Help
Properties:	
Name = <user-defined encoder=""> Edit Line count = 2048 Edit Power supply = 5 V Analogue encoder Analogue encoder Encoder >> Encoder with Z0-track Encoder >> Encoder with Z1-track Encoder >> Encoder with reference pulse Administration</user-defined>	List Servo tion

The menu has the following elements:

- Check box active: If the check box is selected, it means that the firmware analyses the encoder information on this connection. The check box has to be selected if the angle encoder is used for commutation and/or for determining positions or speeds.
- Field Properties: This field shows the properties of the encoder. The encoder has a Name which can be changed by the user. If the current encoder configuration has not been saved yet, the name is displayed as "<user-defined encoder>".
- Button Edit: This button opens another view where the individual options of the encoder can be changed (see also *Chapter 0*).
- Button Encoder >> List: If you have configured a new encoder combination, you can save it under any desired name in a list which is managed by the parameterisation program. If you parameterize a new drive, you can quickly load this combination into the servo by clicking on the Encoder >> Servo and selecting the encoder name.
- Button Encoder >> Servo: This button is used for a quick setting of the encoder. Look for the name of your encoder on the list. When you select this entry, the entire configuration will be loaded into the servo positioning controller.

Sutton Administration: The following menu will appear:

- Use the **Rename** button if you want to rename one of the entries on the encoder list. First, you have to select the desired encoder from the list (upper scroll box).
- Use the **Delete** button if you want to delete an entry from the encoder list. First, you have to select the encoder to be deleted from the list (upper scroll box).
- > Click on the **Exit** button to exit the encoder administration menu.
- Button Save & Reset: Under special conditions the settings have to be stored to the internal non-volatile memory of the servo positioning controller (SAVE). Then it has to be reset (RESET). In this case the yellow hint and the button is visible.
- Button Save (encoders with EEPROM only): If the connected encoder at X2B has an EEPROM a field with a button "Save" appears. Use this button to store encoder and motor parameters to the EEPROM of the angle encoder. Another menu opens when clicking on the button. Choose the option "Save parameters to encoder".

5.2.17 Angle Encoder Identification (Automatic Determination)

During commissioning, the angle encoder is automatically identified. The identification process determines the following parameters:

- Number of pairs of poles
- Angle encoder offset
- Phase sequence of the angle encoder (left, right)

Outside commissioning, the function can also be called up in the following menus:

- * Parameters/Device parameters/Motor data: button Auto detect
- * Parameters/Device parameters/Angle encoder settings: button Auto detect

The following conditions have to be fulfilled for an automatic identification:

- The motor is completely wired.
- The DC-link voltage is present.

- The servo positioning controller is error-free.
- The power stage (DIN4) has been enabled.
- The shaft can move freely.

If the automatic determination cannot be performed during commissioning, the angle encoder data has to be entered manually. See the following chapter.

The following menu will appear:

	Motor identification
	For the identification the motor must be freely turnable!
I	Caution!
	Motor is starting on its own!
I	
l	<u>✓ OK</u> <u>× C</u> ancel

A successful motor identification is indicated by the following message:

5.2.18 Angle Encoder Data (Manual Input)

If the angle encoder data are determined automatically, this point will be skipped!

The following window appears to enter the angle encoder data manually:

Commutating-encode	er: X2A	🖌 <u>о</u> к
Diffset of encoder:		X Cancel ? Help
Phase sequence ೧ right ೯ left		
lumber of poles motor	4 <u></u>	

Enter the correct parameters.

Caution!

Incorrect angle encoder data may lead to uncontrolled movements of the drive. This may damage the motor or the entire system.

5.2.19 Automatic Identification of the Current Controller

During commissioning, the current controller is automatically identified. The identification process determines the following parameters:

- Current controller gain
- Current controller time constant

Outside commissioning, the function can also be called up through the following menu:

* Parameters/Controller parameters/Current controller: button Auto detect

The following conditions have to be fulfilled for an automatic identification:

- The motor is completely wired.
- The DC-link voltage is present.
- The servo positioning controller is error-free.
- The power stage (DIN4) has been enabled.
- The shaft can move freely.

If the automatic determination cannot be performed during commissioning, the current controller parameters have to be entered manually. See the following chapter.

As far as the procedure and the menus are concerned, the automatic identification of the current controller is identical with the automatic angle encoder identification (see *Chapter 5.2.17, Page 58*).

5.2.20 Manual Input of Current Controller Data

If the current controller data has been determined automatically, this point will be skipped!

The following window appears to enter the current controller data manually:

Click **Yes** to confirm. Then the following menu appears:

Current controller		
Gain:	3,00	3,00
Time constant:	1,02 ms	1,02 ms
	<u>Cancel</u>	elp

Enter the correct parameters. If you are unsure, keep the basic parameters.

Caution!

Incorrect data for the current controller gain and the time constant may cause oscillations and destroy the motor and the servo positioning controller!

5.2.21 Setting the Limit Switch Polarity

This menu can also be accessed via <u>Parameters/Device parameters/Limit Switch</u>.

Δ\

Adjust your drive such that no limit switch is active. Make sure that no LED is active in the menu shown below. You can set this by clicking on **Normally closed** or **Normally opened**.

Normally opened	
Change limit switch	
limit o uE0 E1u o lin	nit
switch 0	ch 1

The assignment of the two digital inputs DIN6 and DIN7 to the limit switches E0 and E1 can be changed by the checkbox **Change limit switch**. The physical limit switch connected to DIN6 takes the physical effect of the limit switch connected to DIN7 and vice versa. The functional assignment can be exchanged flexibly without having to change the wiring at the servo positioning controller.

The small illustration in the middle shows a red arrow if the drive is moved in the direction of one of the limit switches.

Limit switches limit the movement range of the application. Apply the following rules for an optimum set-up of the limit switches:

- Consider the required stopping distance for movements at high velocity. Mount the limit switches in a position, so that a sufficient distance between limit switch and end stop results.
- For proper behaviour during indexing and for correct stopping of the movement, the limit switches must fit to the motion direction of the drive. This means that in positive movement direction (actual position in the actual value window increases) the limit switch 1 (E1) becomes active, i.e. limits the movement range.

5.2.22 Configuration of Controller Parameters

5.2.22.1 Configuration of the Speed Controller

5.2.22.1.1 Setting the Speed Controller to Basic Parameters

In the next step of the commissioning process the speed controller can be set to basic parameters. This is recommended. The parameters of the speed controllers are derived from the current controller parameters.

5.2.22.1.2 Manual Configuration of the Speed Controller

The following window will appear under **Parameters/Controller parameters/Speed controller**:

Speed controller Controller type C P-controller	nmended)	
Gain:	1,00	1,00
Time constant:	2,01 ms	2,0 ms
Speed filter:	0,40 ms	0,4 ms
	<u>C</u> ancel	<u>H</u> elp

Enter the following values:

- Controller type (PI controller recommended)
- Gain
- Time constant (PI controller)

5.2.22.2 Configuration of the Position Controller

5.2.22.2.1 Setting the Position Controller to Basic Parameters

In the next step of the commissioning process the position controller can be set to basic parameters. This is recommended.

5.2.22.2.2 Manual Configuration of the Position Controller

The following window will appear under **<u>Parameters/Controller</u>** parameters/Position controller:

Controller type • P-controller			<mark>у о</mark> к
Position controller			X <u>C</u> ancel
Gain:	0,40	0,40	<u>? H</u> elp
Max. correction speed:	500,000 rpm ∢		
Dead range			
positive dead range:	0,00003 R		

For commissioning some irrelevant fields are greyed out.

Enter the following values:

- Gain
- Dead range:
 - Negative and positive dead range: A permissible distance between setpoint and actual value can be set here, within which the position controller does not become active.
- Max. correction speed: Here you can set the speed that will be added to the driving velocity in the case of a following error. This value should at first be set to approx. +/-500 rpm.
- Following error:
 - Message: Parameterisation of a positive and negative following error as well as a response delay. If the deviation between setpoint and actual value increases, a message is issued.
 - Shutdown at...: Here you can parameterise a second limit. If this limit is exceeded, the drive is switched off. The reaction has to be set accordingly in the fault management system.

5.2.23 Permanent Storage of Determined Parameters

In order to complete the parameterisation, the parameters must be permanently stored in the servo positioning controller. This function can also be accessed via <u>File/Parameter set/Save parameter set</u> (EEPROM).

Click on Next >>.

First commissioning	
First commissioning Load parameter set General configuration Display units I/O Configuration Motor data Safety parameters PFC	Save parameter set To complete the first commissioning, the parameter set has to be stored permanently.
Temperature monitoring Commutating-encoder Angle encoder settings Offset, phase sequence Current controller Limit switch Speed controller Position controller Save parameter set	Back << Next >> X Cancel ? Help

5.2.24 Saving as DCO File

The determined parameters can also be saved on the PC. The following window will appear:

irst commissioning	
First commissioning	
 Load parameter set General configuration Display units I/O Configuration Motor data Safety parameters PFC 	First commissioning done! Do you want to store the parameter set as a file (*.dco) on harddisk / floppy disk? If Yes, click on "Next>>" else on "Skip"
Temperature monitoring	
 Commutating-encoder Angle encoder settings 	Next >> Skip
Offset, phase sequence	? <u>H</u> elp
Current controller	
Limit switch	
Speed controller	
Position controller	
🥝 Save parameter set	

You should archive the parameter set, in order to be able to e.g. put further drive packages with the same controller-motor combination into operation quickly and easily. It is also helpful to have a parameter set ready in case of malfunction or maintenance. To save the file on your PC as a *.DCO file, click on **Next >>**. The following window will appear:

ata Comment				- OK
File selection .dco EXAMPLE_X2A.I EXAMPLE_X2B.I)CO)CO	 C:\ Programme Metronix ⇒ bilderServoCo → dco 	mmander	<mark>Х <u>C</u>ancel</mark> ? <u>Н</u> еір
Device Communicat	ion Objects (*.dco)	▼	×	
Type of servo contr	ARS 2102			
Motor type:				
Description:				
		-		

Enter a file name with the extension DCO in the line that shows *.DCO. Also enter the **Motor type** and a brief **Description**. Click on **OK** to save the file.

If you choose not to archive the parameter set, click on Skip.

The commissioning procedure is now complete.

6 First Start and Optimisation of the Motor

It is the objective of this chapter to have the motor run at a constant speed. Afterwards speed and position controllers are to be optimised. The enabling shall be done via the digital input "controller enabling".

6.1 Configuration of the Controller Enabling Logic

In order to enable the servo positioning controller ARS 2000, the controller enabling logic must be set. The controller enabling logic decides which conditions must be fulfilled to enable the controller.

- 1. Select the menu option **<u>Parameters/Device parameters/Controller enable.</u>**
- 2. Select Digital input (DIn5).
- 1. Click <u>OK</u>.

Controller enable logic		
Controller will be enabled by:	<u> </u>	
DIn5 and serial port (RS 232)	🗾 🗶 <u>C</u> ancel	
	<u>? H</u> elp	

This menu can also be accessed via the Commands window: Click on the "…"-button in the field **Controller enable**.

6.2 Configuration of the Speed-Controlled Mode

The servo positioning controller ARS 2000 can operate in different modes, e.g. torque control (*Chapter 11.2, Page 106*) and speed control (*Chapter 11.1, Page 105*).

For operation at a constant speed the Commands window must be set as follows:

6.3 Preparing the Actual Value Display

The parameterisation program Metronix ServoCommander[™] allows you to numerically display all measured values on the screen of your PC simultaneously. For the first commissioning you should display at least speed and motor current.

The actual value display can be set in the Actual values window (see below) under **Display/Actual values**. All actual values that are to be displayed must be checked by clicking on them with the left mouse button or by pressing the corresponding underlined letter (e.g. S for **Speed**). Selecting the actual value again removes it from the display window (check mark will disappear).

- 1. Click on Display/Actual values in the menu bar.
- 2. Check the entries Motor speed and Motor current.

The actual value display should now look like this:

Actual values	
Speed	
Actual value:	0 rpm
Setpoint:	0 rpm
Motor current rms:	0,00 A

6.4 Selecting Setpoints

Select **Operating mode /Setpoint selection** on the bar. The following window will appear:

Setpoint selectors				
Torque control Speed control Position setpoint				
Selector A (Adder) Analogue input 0 Analogue input 1 Analogue input 2 Fixed value 1 Fixed value 2 Fixed value 3 Process controller n_ref_PWM_X10 Selector B Analogue input 0 Selector B Analogue input 0 Function selector B Selector C Function selector C	tion			X Cancel ? Help
Analogue input 0 💌 inactive	•			
	↓	. I I I I I I I I I I I I I I I I I I I		
	Speed setpoint	Positive torque limitation	Negative torque limitation	
	0,000 rpm	-0,25 Nm	0,25 Nm	
				1

For the torque and speed control modes, the setpoint can be defined by means of setpoint management. Selectable setpoint sources are:

- 3 analog inputs:
 - AIN 0, AIN 1 and AIN 2
- 3 fixed values:
 - > 1st value: configuration depending on controller enabling logic:
 - Fixed value 1 or
 - RS232 interface or
 - CANopen-Bus interface or
 - PROFIBUS-DP interface or
 - SERCOS interface
 - > 2nd and 3rd value: Configuration of fixed values 2 and 3
- Process controller <not implemented yet>
- Synchronous speed
- Additional incremental encoder input X10 as PWM input

If no setpoint source is activated the setpoint will be zero.

The setpoint management features a ramp generator with an upstream adder (**selector A**). Any of the above-mentioned setpoint sources can be selected using corresponding selectors and provided as a sum to the ramp generator. The ramp generator can be activated and deactivated using the button shown below.

By means of two more selectors (**selector B** and **selector C**) additional sources can be selected as setpoints and/or limitation values, which, however, will not be run through the ramp generator. The total setpoint is then the sum of all values. The speed and deceleration time of the ramp can be parameterised directionally.

In the window shown above for the selection of the speed setpoint it is also possible to activate the torque limitation. This torque limitation can be asymmetrically or symmetrically with a free selection of the source of limitation. In the example mentioned above, **fixed value 2** was selected as the source for a symmetrical torque limitation.

Select the menu Operating mode/Setpoint - Selection.

- 1. In the field Function selector A select the function Reference speed value.
- 2. Activate fixed value 1 as the setpoint source in the field Selector A.
- 3. In the field Function selector B activate the function symmetric torque limitation.
- 4. As source for the **symmetric torque limitation** activate **fixed value 2** in the field **Selector B**.

6.5 Enter Setpoints (Speed, Torque)

Now, in menu **Operating mode/<u>S</u>etpoint - Selection**, click on the "..."-button in the section **Selector A** for **fixed value 1** in order to enter the setpoints. The window below will appear. You can also open this menu by **Operating mode/<u>S</u>etpoint speed values**.

Setpoint value - Speed values	
Fixed value 1	
Speed limit	100,000 U/min
Speed setpoint	
✓ Transfer immediately	C Transfer
Fixed value 2	
Speed limit	0,000 U/min
Speed setpoint	•
✓ Transfer immediately	C Transfer
Fixed value 3	
Speed limit	0,000 U/min
Speed setpoint	€
▼ Transfer immediately	C Transfer
IST	
✓ <u>O</u> K X <u>C</u> ance	l <u>? H</u> elp

Here, enter setpoints or limit values numerically. Click onto the red **STOP** symbol in order to quickly delete incorrect values. The setpoint is immediately set to 0 and transferred.

Uncheck the check box **Transfer immediately** if the setpoint should not be transferred immediately. Then, new setpoints are transferred when clicking on the button **Transfer**. P

ື່ງໃ

Enter a setpoint of 100 rpm.

The fixed values 1..3 exist in fact twice for the operating modes torque control and speed control. Depending on the operating mode, the value is used as speed setpoint/speed limitation or torque setpoint/torque limitation. The setpoint dialogue shows either torque or speed values only. Close the dialogue and start it again by **Operating mode/Setpoint speed values** resp. **Operating mode/Setpoint torque values** if you want to set the other values. Furthermore it is possible to activate the other mode by clicking onto the "…" buttons in the setpoint selection dialogue.

P

Close the menu **Setpoint value**. Now, click onto the "…" button in **selector B** in the menu **setpoint selectors**. The following dialoge appears:

Torque setpoint	0,00 Nm	
Torque limitation	•	•
▼ Transfer immediately	C Transfer	
Fixed value 2		
🐡 Torque setpoint	0,50 Nm	
Torque limitation	1	Þ
▼ Transfer immediately	🛞 Transfer	
Fixed value 3		
Torque setpoint	0,00 Nm	
Torque limitation	•	•
✓ Transfer immediately	C Transfer	
s	TOPI	

The previously activated source **fixed value 2** is indicated by a green arrow. In the example, the **Torque limitation** is set to 0.5 Nm.

Set a limitation of 0.5 Nm.

6.5.1 Configurations for Analogue Inputs

In the Setpoint-selectors window, click the **"…**"-buttons in the section for the analog inputs Analogue input 0 to Analogue input 2 or **Parameters/<u>I</u>Os/Analog inputs** to open the following window:

AIN 0 AIN 1 AIN 2 AIN 0 - Scaling: An input voltage of + 10 V corresponds to Torque setpoint Torque limitation Speed setpoint Position setpoint Filter time constant 0,000 V 0ffset: 0,000 V 0 ffset: 0,000 V 0,000 V	nalogue inputs			
AIN 0 - Scaling: ✓	AIN 0 AIN 1 AIN 2			
An input voltage of + 10 V corresponds to Torque setpoint 7,07 A 7,07 A ? He Torque limitation 1000 rpm 1000 rpm 1000 rpm 1000 rpm 1000 rpm Speed setpoint 1000 R 10,00 R 10,00 R 10,00 R 10,00 R Position setpoint 10,00 R 10,00 R 10,00 R 10,00 R 10,00 R Filter time constant 1,00 ms 1,00 ms 1,00 ms 1,00 ms 1,00 ms Offset: 0,000 V 1 1 1 1 1 Safe Zero 0,1 ↓ ∨ 1 > 1 > 1	AIN 0 - Scaling:			
Torque setpoint 7,07 A Torque limitation • Speed setpoint Speed limit • Position setpoint 10,00 R • I0,00 R • I0,10	An input voltage of + 10 V	corresponds to		X <u>C</u> ancel
Torque limitation • Speed setpoint Speed limit • Speed limit • Position setpoint 10,00 R • 10,00 R	Torque setpoint	7,07 A	7,07 A	
Speed setpoint 1000 rpm Speed limit 1 Position setpoint 10,00 R Filter time constant 1,00 ms 0,000 V 1,00 ms Offset: 0,000 V Auto offset calibration 0,1 √ Safe Zero 0,1 √	Torque limitation			<u>; T</u> eib
Speed limit Position setpoint 10,00 R 10,00 R 10,00 R 10,00 R 10,00 R 10,00 R 10,00 ms 1,00 ms	🔸 Speed setpoint	1000 rpm	1000 rpm	
Position setpoint 10,00 R Image: setpoint 10,00 R Image: setpoint 1,00 ms Image: setpo	Speed limit			
Filter time constant 1,00 ms 1,00 ms 1,00 ms 1,00 ms 1,00 ms 4 > Offset: 4 Auto offset calibration	Position establish	10.00 R	10.00 R	
Filter time constant 1,00 ms 1,00 ms 1,00 ms 0,000 V 0,000 V 0ffset: 1 Auto offset calibration Safe Zero 0,15 V 1 >	r osition setpoint			
Image: Contract of the second sec	Filter time constant	1,00 ms	1,00 ms	
Offset:		•		
Offset:		0,000 V		-
Auto offset calibration Safe Zero	Offset:			
Safe Zero 0,12 ∨		Auto offset calibration		
Safe Zero		la dhu		-
	Safe Zero	0,12 V		

The values to be set here determine the 'conversion factor' between input voltage and the setpoint.

Enter how the input voltage is converted into the torque, speed or position in the three fields **Torque setpoint/Torque limitation**, **Speed setpoint/Speed limit** and **Position setpoint**. The small green arrow shows, which parameter is currently driven by the analogue input.

The analogue input AIN0 is a 16 bit input. Due to this high resolution a digital filter is located in front of it. Enter the time constant at which the input value will be filtered in the field **Filter time constant**.

In most cases the problem is that at an externally set voltage of 0 Volt a very small setpoint will still be generated. The offset must therefore be adjusted by some millivolts. This can only be done manually, by setting the offsetpoint correspondingly. It is recommended, however, to perform an automatic offset calibration. To do so, short-circuit the input or apply the potential corresponding to the setpoint of "zero". Then click on the button Auto offset calibration.

In some cases it is desireable to have a real zero speed which do not depend on signal noise or offset drifts. This behaviour is effective for all modes of the input (speed-, torque- .. setpoints) for having a defined standstill of the speed for instance. The adjustable offset is also considered. If the item "Safe Zero" is set to values higher than 0, the following diagram shows the function e.g. for the speed setpoint n_ref with U_in = U_AIN0 – Offset.

The resulting speed setpoint is zero for input voltages in the range [-U_zero_safe ... +U_zero_safe]. "Safe zero" is only available for AINO.

6.5.2 Setpoints and Setpoint Ramps

The servo positioning controller ARS 2000 can process setpoint leaps in different manners. The setpoint leap can be transmitted to the speed or torque controller without filtering. The positions controller can also calculate a function, which combines the different setpoints of selector A with a ramp of adjustable slope.

The menu itself can be activated in the menu **Operating mode/Setpoint - Selector** with the following icon

or via Operating mode/Ramps.

The following window will then appear:

eed Torque		
Connections		
 □ r3 = r1 □ r4 = r2 □ r2 = r3 = r4 = r1 	v(t) 11 12 t 13 14	X Cancel ? Help
L Positive movement r1: 0 -> (+n_set)	14100,000 rpm/s	
r2: (+n_set) -> 0	154052,719 rpm/s ◀ ▶	
Negative movement		
r3: 0 -> (-n_set)	121041,422 rpm/s	

The ramps can be set separately for positive and negative movements, and also for increasing and decreasing speeds or torques. If some of the ramp accelerations are identical, the input can be abbreviated by simply activating the corresponding checkboxes:

- ✤ r3 = r1
- ✤ r4 = r2
- ✤ r2 = r3 = r4 = r1

6.6 Starting the Drive in Speed-Controlled Mode

Caution!

This chapter may only be tried out, after *Chapter 4 Installation, First Program Start and Communication, Page 30* has been completed, particularly the configuration of the limit of the RMS-current range, the current controller and the mode of operation. Furthermore, *Chapter 6 First Start and Optimisation of the Motor, Page 67* must have been completed up to this point.

Wrong basic configurations can destroy the servo positioning controller/motor and the mechanical drive.

Caution!

With the controller enabling the motor can run at very high speeds! Therefore lock the controller enabling after each test and wait until the shaft stands still again! If the servo positioning controller ARS 2000 is wrongly parameterised, it is possible that you can only stop the motor by switching off the output stage enabling. If this input is wired without a switch, you must press RESET, to deactivate the servo positioning

controller ARS 2000.

Before testing the controller enabling, save the parameters. This is done by clicking on the button shown below.

The button is located in the upper tool bar of the main window.

Briefly switch on the controller enabling.

The six outer segments of the seven-segment-display light up as a running bar around the horizontal centre bar indicating the direction of rotation and the speed of the motor.

After the control system has been enabled, the shaft has to start rotating. If the motor does not show this behaviour, there is either an error or the ARS 2000 servo positioning controller has been parameterised incorrectly. The following table shows typical mistakes and how you can eliminate them:

Error	Solution
The display shows no crossbar.	Check the 24 V voltage supply, set controller enabling logic
The display shows the letter P.	The mode position control is activated, deactivate them in the Commands window.
A 3-digit error code flashes in the display.	Refer to <i>Chapter 14.2 Error</i> / Warning Messages, <i>Page 206</i> on how to solve the problem
The brake cannot be enabled.	Check the connector X6 and the motor plug as well as the cable. Does the voltage source fulfill the specifications? See also <i>Chapter "X6</i> <i>Connection of motor"</i> in the product manual servo positioning controller ARS 2000.
The motor develops a holding torque, it "snaps" in different positions.	The pole pair number and/or the phase sequence is wrong, set the pole pair number correctly (<i>Chapter 5.2.11 Configuration of motor specifications, Page51</i>) and/or switch the motor phases.
The motor oscillates or runs unevenly.	The angle encoder offset (see <i>Chapter 5.2.17</i> , <i>Page 58</i> and <i>5.2.18</i> , <i>Page 59</i>) and/or the controller parameters (see <i>Chapter 0</i> , <i>Page 62</i>) are set incorrectly. Run the automatic identification again, as described in <i>Chapter 5.2 Commissioning</i> , <i>Page 36</i> .
The motor does not turn	No DC bus voltage.
	Limit switches are active

Table 7:	Troubleshooting:	Sneed	control
	moubleshooting.	Speeu	CONTROL

When connecting the motor phases, note that different manufacturers of servo motors use different phase sequences. If necessary, the phases U and W must be switched.

6.7 Current Controller Optimisation

	1
۲]
Ł	5

Normally, the current controller is optimised during commissioning (*Chapter 5.2, Page 36*). A separate optimisation is not necessary.

Make sure that the maximum currents and the nominal currents of the motor have been adjusted correctly prior to optimising the current controller. If the currents are too high, the motor will be destroyed as the permanent magnets inside the motor will be demagnetised. The current limits stated by the manufacturer must not be exceeded (see *Chapter 5.2.11, Page 51*).

It is essential to adjust the current controller correctly in order to be able to the adapt the speed controller to the motor used. The parameters to be set is the gain and the time constant.

Current controller				
Gain:	5,09	5,09		
Time constant:	1,27 ms ◀ ▶	1,27 ms		
Auto detect				
<u> </u>	<u>C</u> ancel ? <u>H</u> e	elp		

To determine the values of the current controller automatically, click on the **Auto detect** button. Make sure that the motor is in idle mode, i.e. that no load is connected to the shaft.

If a repeated parameter determination for the current controller leads to different values, there is no need to worry.

The parameters mentioned can also be configured manually. However, this is very timeconsuming. This is not necessary in most cases. Please contact your distributor if you require additional information concerning this subject.

6.8 Speed Controller Optimisation

6.8.1 Overview

The optimisation of the speed controller is performed in two steps:

- Optimisation of the actual speed value filter (see Chapter 6.8.2)
- Optimisation of the parameters "Gain" and "Time constant" (see Chapter 0)

A speed controller optimisation is possible for a not completely installed drive yet! If you parameterise the speed controller while the motor shaft runs at no load, you have to increase the controller gain after you have installed the drive.

6.8.2 Actual Speed Value Filter Optimisation

To optimise the control response, the measured actual speed value has to be smoothed. This is done using an actual speed value filter. The effective filter time constant can be parameterised:

- 1. Select the menu item **Parameters/Device parameters/Speed controller**.
- 2. Set the **time constant** of the actual speed value filter to 0.4 ms.
- 3. Click <u>O</u>K.
- 4. Save the setting using **File/Parameter set/Save parameters (EEPROM)**.

As the actual speed value filter will be included in the speed control circuit as an additional time constant, it should be as small as possible. This is why we recommend the value of 0.4 ms for commissioning.

If the time constant of the actual speed value filter is too high, the dynamic response deteriorates as disturbances are detected with a delay.

In certain unfavourable cases, an unsuitable time constant can have a negative effect on the stability of the speed control circuit. The additional run time may lead to oscillations.

This is why you should set the time constant as low as possible.

6.8.3 Optimisation Speed Controller: Gain and Time Constant

Optimizing the time constant and the gain of the speed controller is performed by applying a speed setpoint step. Monitor the reaction of the speed controller on the setpoint steps with the oscilloscope function and accordingly set the controller parameters.

The speed controller has to be adjusted such that there is only one overshoot of the actual speed value. The overshoot should be about 15% higher than the speed setpoint. The falling edge of the overshoot, however, should not be below the speed setpoint or just slightly below it and then reach the speed setpoint. This setting applies to most motors which can be operated using the servo positioning controller. If a harder control response is required, the gain of the speed controller can be increased further. The gain limit is due to the fact that the drive tends to oscillate at high speed levels. The gain that can be reached in the speed control circuit depends on the load conditions at the motor shaft. This is why you have to check the speed controller setting again when the drive is installed.

You have to use the oscilloscope function and the integrated reversing generator for the optimisation. It is important to disconnect the motor from the mechanical drive.

The speed controller cannot be optimised until the commissioning has been performed. Otherwise the motor and the servo positioning controller may be damaged! (See *Chapter 5.2, Page 36*).

The reversing mode may damage a drive connected to the motor. Disconnect the motor!

- 1. Call up **Options/Input limits** and enter the maximum value for the acceleration under "Speed values".
- 2. Start the oscilloscope by activating the menu item **Display/Oscilloscope** and enter the following values:
 - Channel 1: Speed setpoint; scaling = 200 rpm / div; offset -2 div
 - Channel 2: Actual speed value; scaling = 200 rpm / div; offset -2 div
 - > Channel 3: OFF
 - > Channel 4: OFF
 - > Time base: 5 ms / div; delay = -5 ms
 - > Trigger: Source = speed setpoint; level = 50 rpm; mode = normal, rising trigger edge
- 3. Call up the reversing generator (Display/Reversing generator) and enter the following values:
 - Reversing distance: 10 R
 - Reversing speed: 1000 rpm
 - Acceleration: (maximum value)
 - Deceleration: (maximum value)
- 4. Activate the power stage and controller enabling. Start the reversing generator. The motor now reverses within the specified limits.
- 5. Observe the resulting oscillograms. Compare them to the patterns shown in the next chapter.
- 6. Start the speed controller (<u>Parameters/Controller parameters/Speed controller</u>). If the speed controller is set too soft or too hard, take the measures described in the next chapter. Try out different settings to find the optimal solution. See the following chapter.
- 7. Save the setting with the help of <u>File/Parameter set/Save parameter set</u>.

6.8.4 Optimisation Strategies (Speed Controller)

Make sure that you do not change the numbers for the gain factor and the time constant in too large steps. Use small changes.

After the numbers have been changed, there may be two different situations:

- If the setting is too hard, the speed controller will become unstable.
- If the setting is too soft, the drive will not be rigid enough which will lead to lag errors.

The speed controller parameters are not independent of each other. A measurement curve which differs from trial to trial can have various reasons. This is why you should change only one parameter at a time: Either the gain factor or the time constant.

To adjust the speed controller, increase the gain until oscillation starts and then decrease the gain in small steps until oscillation ceases. Then decrease the time constant until oscillation starts and decrease it again in small steps until the controller is stable and rigid enough at a setpoint = 0.

Case 1: Speed controller too soft

Remedy: Increase the gain factor by 2 to 3 tenths / Decrease the time constant by 2 to 3 ms

Case 2: Speed controller too hard

Remedy: Decrease the gain factor by 2 to 3 tenths / Increase the time constant by 2 to 3 ms

Case 3: Speed controller set correctly

6.8.5 Position Controller Optimisation

You can skip this chapter if your drive is used only in speed or torque mode.

To optimise the position controller it is essential that the current controller and the speed controller have been adjusted correctly. (See the preceding chapters)

The reversing mode is required for optimising the position controller. Please make sure that the motor shaft can rotate freely and that the drive cannot be damaged.

The position controller (menu item **Parameters/Controller parameters/Position controller**) generates a resulting speed on the basis of the difference between the set position and the actual position and transfers this resulting speed value as a setpoint to the speed controller. The functions of the position controller are explained in *Chapter 5.2.22.2, Page 63.* This chapter explains how to optimise the gain.

The following steps have to be performed for the optimisation:

- 1. Activate the position controller (menu item **Parameters/Controller parameters/Position controller**) and set the **gain** to 0.5.
- 2. Call up the reversing generator (**Display/Reversing generator**) and enter the following values:
 - Reversing distance: 10 R
 - Reversing speed: (half nominal speed)
 - Acceleration: (maximum value)

- Deceleration: (maximum value)
 Do not start the reversing generator yet!
- 3. Start the oscilloscope by activating the menu item **Display/Oscilloscope** and enter the following values:
 - Channel 1: Actual speed value; scaling = 1000 rpm / div, -2 div
 - Channel 2: Rotor position; scaling = 50 ° / div; offset 1 div
 - > Channel 3: OFF
 - Channel 4: OFF

Δ

- Time base: 100 ms / div; delay = -200 ms
- Trigger: source = actual speed value; level = half reversing speed; mode = normal; falling trigger edge
- 4. Activate the power stage and controller enabling. Start the reversing generator. The motor now reverses within the specified limits.

Optimisation: Evaluate the speed and the rotor position during stopping. If the transient process of the position takes too long, increase the gain. If the speed starts to oscillate during stopping, the gain has to be decreased.

Please note that the overshoots are due to missing acceleration and deceleration time values.

For an optimal adjustment of the control to the load, a high force/mass ratio is regarded or makes it easier to find a good controller parameter set-up. For the so called direct mode drives (without gear) this ratio is disadvantageous and leads to more instable behaviour. Some example for direct mode drives are:

- Torque motors without gear connected to a heavy turning arrangement with high diameter.
- Motor shaft drives a heavy load directly. For example, a gearwheel on a motor shaft moves a heavy sledge.

The adjustment of the control in such a case can be done as follows:

- ✤ Use an encoder with high resolution
- Enlarge the speed controller gain till the resonance is nearly reached
- Decrease the gain and the maximum correction speed of the position controller
- Decrease the acceleration and deceleration in the positioning set.
- Activation and set-up of the torque feed forward in the positioning set.

7 Display units (details)

The menu Display units is activated by **Options/Display units**. A basic introduction into that menu is given in *Chapter 5.2.6, Page 44*). Here, the **Standard values** mode is explained that covers 90 % of all applications. In the following chapters you find information concerning the modes **User-defined** and **Direct input**. The following table shows which mode is needed in which case.

Selection	Units
Standard values	For translatory systems: positions in distance units, velocities in [distance units]/s; accelerations in [distance units]/s ² For rotatory systems: positions in revolutions, degrees or radiant, different velocity and acceleration units
User-defined	 Examples: For translatory systems and non-metrical path, velocity and acceleration units (e.g. inch, inch/min) For rotatory drives with special distance, velocity and acceleration units
Direct input	Free configuration of the distance, velocity and acceleration units. For experienced users only!

Table 8: Setting of base configuration and display units

The configuration of the display units is independent of a possible setpoint definition via field bus. The configuration of the display units therefore has no influence on the factor group and the notation and dimension indices in field bus-specific protocols, see also *Chapter 15.1.9.* At the moment a support for CAN is not available.

7.1 User Defined Display Units

All user defined units ("User defined") are displayed by [..].

Enter the scaling in user-defined units per revolution in the field **Feed constant** in the tab **Display units**. In addition, the input fields **Time base speed** and **Time base acceleration** are available.

Display units		
Display units	s Decimals Direct input ode Standard values User-defined	Translatory application Feed constant 1,0000 User-defined [] per rotation
	Direct input	Time base Time base speed in [s]: 1,000000 Time base acceleration in [s ²]: 1,000000
Torqu	e in Nm Factor	Display units: User-defined []

Use the field Time base speed to define your own speed units.

Example:

Page 84

You have a drive with 20 mm per revolution, without a gearbox. You would like to enter the speed in mm/minute. The **Feed constant** must be set to 20, the value for **time base speed** is 60 (60 seconds = 1 minute).

Use the field **Time base acceleration** to define your own acceleration units.

Example:

You have a drive with 20 mm per revolution, without a gearbox. You would like to enter the acceleration in (mm/minute)/s. The **Feed constant** must be set to 20, the **Time base acceleration** has to be set to 60 (1 minute x $1s = 60 \times 1 s^2 = 60 s^2$).

7.2 Direct Input of the Distance, velocity and Acceleration Units

Caution! For experienced users only!

The direct input of the physical units allows drastic changes of the controller parameters for the servo positioning controller ARS 2000.

In the tab **Direct input** in the menu <u>**Options/ Display units**</u> you can directly describe the Factor groups of position, speed and acceleration, if you previously selected the option **Direct input** in the menu <u>**Options/ Display units**</u>.

For the display in the parameterisation program Metronix ServoCommander[™], you can also select from the following units:

- Increments
- Degrees
- Radiant
- Revolutions
- Meters
- Millimeters
- Micrometers
- User-defined
- No unit

Here for example in millimeters and hexadecimal display:

arning: This me	nu is reserved for exp	perienced users!		×	<u>C</u> ancel
Factor group po	sition			2	Help
Numerator:	1	Revolutions [R]	•		
Denominator:	64				
Factor group sp	eed				
Numerator:	48	Revolutions per minute [rpm]	•		
Denominator:	4C				
Factor group ac	celeration				
Numerator:	4	(Revolutions per minute)/second [rpm/s]	•		
Denominator:	11				

8 Communication

The following figure shows the general communication paths of the parameterisation program:

Figure 1: Communication paths

In general, there are three operating possibilities for the parameterisation program:

- RS232: The parameterisation program communicates with the servo positioning controller via the serial interface.
- Ethernet / UDP: The parameterisation program communicates with the servo positioning controller via Ethernet / Internet. For this operation an Ethernet technology module has to be installed and parameterized in technology slot 1!
- Offline-parameterisation: The parameterisation program operates (without a servo positioning controller) with a parameter set file (DCO-file) only.

Take the currently active communication mode from the symbol bar below the menu bar:

 Table 9:
 Representation of the operating states in the parameterisation program

RS 232 UDP Offline	Parameterisation via RS232
RS 232 UDP Offline	Parameterisation via Ethernet / UDP
RS 232 UDP Offline	Offline parameterisation

The following table shows which actions are available in each operating state:

	RS232	Ethernet / UDP	Offline
Display and modification of the parameters currently available in the servo positioning controller	yes	yes	no
Display and modification of the parameters available to a file	no	no	yes
Printing of the current parameters (of a file or of the servo positioning controller)	yes	yes	yes
Save the current parameters in the Flash memory of the servo positioning controller	yes	yes	no
Save the current parameters (of a file or the servo positioning controller) to a file	yes	yes	yes
Load a parameter set into a servo positioning controller	yes	yes	no
Firmware download	yes	no	no

8.1 Communication via RS232

Take more information concerning the configuration of the RS232 communication as well as troubleshooting from the *Chapters 4.2* up to *4.5*.

8.2 Communication via Ethernet / UDP

The following requirements are necessary for a communication with the servo positioning controller via UDP/ Ethernet:

- The PC with the installed parameterisation program has an Ethernet interface
- The servo positioning controller has a correctly parameterized Ethernet module
- The PC has read and write access rights to the network address under which the Ethernet module is registered. This concerns the items correct assignment of network addresses, access rights and possible configurations of firewalls etc.
- The communication parameters of the parameterisation program are correctly set.

8.2.1 Assignment of Network Addresses and Masks

You need to know the network address of the PC in order to assign a useful network address of the Ethernet module.

Proceed as follows in order to find out the network address of the PC: Start the MS-DOS[®] – command window and enter the command **IPCONFIG** in the command line. The network address of the PC is displayed under **IP-Adresse** (IP address). Alternatively find out the network address in the Windows[®] menu **Systemsteuerung/Netzwerkeinstellungen/Internetprotokoll (TCP/IP) (system control/network settings/internet protocol (TCP/IP)).**

In general there are two ways of accessing the address of the Ethernet module:

Access without gateway: This access is possible if the IP address of the Ethernet module and the PC are "similar". In detail, this means that the Ethernet address is logically "ANDed" with the network mask XXX.XXX.XXX.XXX.

Example:	own IP:	010.122.034.218	or	192.168.000.001
	subnet mask:	255.255.252.000		255.255.255.000
	Ethernet address:	010.122.034.082		192.168.000.090

Access with gateway: This access is possible if the IP address of the Ethernet module and the PC are not "similar". The participating gateways/routers have to be configured accordingly by your network administrator.

8.2.2 Configuring the Ethernet Communication parameters (Ethernet Module)

The Ethernet module can be configured by RS232 communication.

The menu for configuring the communication parameters of the Ethernet module is opened by **Options/Communication/Communication parameters UPD / Communication UDP (Ethernet)**. The following menu opens:

UDP piggy settings		
Port number:	8802	
IP address:	192.168.0.82	
Subnet mask:	255.255.255.0	
Gateway:	192.168.0.82	
Timeout time user logout:	10,0 s	
✓ <u>O</u> K <u>K</u> ancel		

The single parameters have the following meaning:

Port number:	Port number of the Ethernet communication via UDP. Select a free port number in the interval of 500065535.
IP address:	IP address of the Ethernet communication via UDP. The address has to be unequivocal in the network segment of the Ethernet module.
Subnet mask:	The subnet mask divides a network into subnets which are connected to the routers / gateways. Select the subnet for the Ethernet communication.
Gateway:	IP of the gateway which is part of the subnet of the Ethernet module.

You may check the correct configuration of the Ethernet module and the accessibility in the network by a so called PING command. Therefore, proceed as follows:

Start the MS-DOS® - command window. Enter the command PING <IP address>.

The parameter is the IP-address of the Ethernet module to test.

8.2.3 Setting the Ethernet Communication Parameters (Ethernet Module)

Also set the parameterisation program as counter part correctly after the Ethernet module has been configured for the access. For this open the menu **Options/Communication/Communication parameters UDP (Ethernet)/Communication UDP (Ethernet)**. The following menu opens:

UDP	
IP destination address:	192.168.000.001
Port number:	8802
Minimum timeout time:	3,0 s
✓ <u>O</u> K X <u>C</u> ar	ncel ? <u>H</u> elp

The single parameters have the following meaning:

- IP address: Enter the IP address of the technology module, with which the UDP communication is to be set up, into this field.
- **Port number:** Enter the IP address of the technology module, with which the UDP communication is to be set up, into this field.

Minimum timeout time: If you communicate on a very large network using the Ethernet module, the parameterisation program may detect a timeout as the packets cannot be exchanged quickly enough between the parameterisation program and the servo positioning controller. Use this parameter to enter a minimum time required for the exchange of packets.

Please ask your network administrator for the network parameters in order to configure the parameterisation program for the access.

Calculate with increasing communication time in large network architectures due to the growing number of routers/gateways. Increase the timeout time accordingly.

8.2.4 Activation of the UDP Communication (Ethernet)

Activate the Ethernet communication by clicking the lower displayed button:

The following error window appears if the parameterisation program Metronix ServoCommander[™] can not establish a connection via UDP to the servo positioning controller ARS 2000:

No communication / communication error ethernet / UDP		
Please connect servo and computer via ethernet and switch on 24V supply voltage of the servo!		
If you want to change parameter files without any servo controller, please choose "Offline-Parameterisation"		
© Retry with old parameters		
C Change communication parameters (UDP)		
© Offline-parameterisation		
C Activate RS232 communication		
C Exit program		
🗸 ОК		

The following table describes possible error causes and error recovery strategies:

Table 11: Recovering problems with UDP communication

Cause	Measure
Communication is 'choking'.	Click on Retry with old parameters.
Wrong IP address, port or Gateway selected.	Click on Change communication parameters (UDP) and follow the instructions.
Another parameterisation program communicates with the Ethernet module yet.	Check which parameterisation program has to communicate. Close the other parameterisation program.

Cause	Measure
Servo positioning controller ARS 2000 communication malfunction.	RESET the servo positioning controller ARS 2000, and then click on Retry with old parameters .
Servo positioning controller ARS 2000 has no or incomplete firmware.	In this case, first, a valid firmware has to be loaded into the servo positioning controller via RS232. Establish a connection via RS232 and then click on Activate RS232 communication.
 <u>Hardware-Error:</u> Servo positioning controller ARS 2000 switched off 	Recover the error, and then click on Retry with old parameters .
 Connecting cable not plugged in 	
 Connecting cable too long 	

Offline parameterisation only makes sense, if you want to edit parameter set files without the servo positioning controller ARS 2000 (please refer to *Chapter 9.2, Page 96*).

9 Parameter Sets

This chapter explains functions concerning parameter sets.

Definition parameters / parameter set:

In order for the servo positioning controller ARS 2000 to operate the motor properly, the properties of the servo positioning controller ARS 2000 must be set correctly. The individual properties are in the following called **Parameters**; the total of all parameters for a servo positioning controller/motor combination is called a **parameter set**.

All parameter set functionalities are listed under File/Parameter set.

Which functions are available under this menu item depend on the communication type: RS232, UDP (Ethernet) or offline parameterisation, see also *Chapter 8*.

The following table shows which functions are available in which operating state:

R8232	UDP (Ethernet)	Offline parameterisation
File >> Servo	File >> Servo	
Servo >> File	Servo >> File	
Print	Print	Print
Load default parameter set	Load default parameter set	
Save parameter set	Save parameter set	
		Open file
		Save file
		Save file as

The functionalities of the operating states "RS232" and "UDP" are similar as can be taken from the table. So these functionalities are together named **Online parameterisation** in the following chapters.

9.1 Functionalities of the Online Parameterisation

Online parameterisation has the following functionalities:

File >> Servo	The parameter set is read from a file and transmitted to the RAM of the servo positioning controller ARS 2000. It will also be stored in the non-volatile EEPROM and a RESET is carried out subsequently .
Servo >> File	The current parameter set of the RAM is transferred to the computer and stored there.
Print	The current parameter set of the RAM is generated as plain text. This text can be displayed on the screen, printed or saved as a text file (see Chapter 9.3).
Load default parameter set	The parameter set saved in the firmware is written to the EEPROM and RAM and saved there. The servo positioning controller ARS 2000 performs a reset initiated by an internal software command.
Save parameter set	The parameter set saved in the RAM is copied to the EEPROM and saved in a non-volatile form.

During handling of parameter sets the following items should be regarded:

- The reset to the default parameter set should be performed if a former parameterized servo positioning controller should be used in a new application or if undefined behaviour happens cause of parameter changes due to bus accesses.
 During applying of CAN Bus, PDO set-ups stored in the servo controller could result in access conflict by the superposed control
- The online changes in the RAM of the servo done by the user can be easily discarded by a reset of the servo positioning controller. Then the stored parameters are reloaded from the EEPROM. This is useful for doing fast tests. For instance, some changes of the speed controller set-ups without influencing the stored parameters in the EEPROM
- ✤ As far as a good set-up is found the parameters should be stored in the EEPROM.
- If a new firmware upgrade should be loaded to the servo positioning controller, it is recommended to first readout the parameters set-up. After upgrading the firmware the default parameter set should be loaded and after this the old parameter set should be stored to the servo positioning controller during the first set-up menu.

9.1.1 Online Parameterisation: General

The following illustration depicts the administration of parameter sets:

Figure 2: Online parameterisation

The current parameter set of the servo positioning controller ARS 2000 is available in the RAM (RAM = Random Access Memory). The RAM looses its content as soon as the supply voltage is switched off. In order to permanently save a parameter set, it can be copied to the EEPROM using the command **File/Parameter set/Save parameter set**. The EEPROM (Electrical Erasable Programmable Read Only Memory) does not loose its content, even if the voltage is switched off.

With each reset of the servo controller the content of the EEPROM is copied to the RAM. A servo controller reset can be initiated by:

- Switching the 24 V supply voltage off and on again
- Pressing the Reset button on the casing of the servo positioning controller ARS 2000
- Activating the menu option <u>File/Reset Servo</u>
- Click on the RESET button in the toolbar

Each servo positioning controller ARS 2000 also has a default parameter set. This parameter set is permanently stored in the firmware and cannot be overwritten. If the parameterisation should fail for any reason, the standard parameter set can be loaded, to have a solid basis for a new parameterisation. The standard parameter set is activated by selecting <u>File/Parameter set/Load</u> **default parameter set**. The default parameter set is then copied into the EEPROM and the RAM.

9.1.2 Loading and Saving of Parameter Sets

Referring to the previous chapters it is also possible to save and administer parameter sets externally (i.e. on hard disk or floppy disk). The parameter set is then read by servo positioning controller ARS 2000 and saved to a file or it is read from a file and saved in servo positioning controller ARS 2000.

The extension of the parameter files are *.DCO. Reading and writing of the *.DCO files in Metronix ServoCommander are initiated in the following menus:

Reading of a *.DCO file: <u>File/Parameter set/File >> Servo</u>
 Writing to a *.DCO file: <u>File/Parameter set/Servo >> File</u>

Note that when writing a parameter set to a file, you can fill out the fields Motor type and Description. You can also enter a comment of up to 100 lines, by selecting the tab Comment. We highly recommend the generation of descriptions, to prevent confusions of parameter sets. The name of the parameter set should also be selected carefully to facilitate finding the right file later on.

Please use the comment field to save information.

*.DCO files can be sent via floppy disk, CD-ROM and/or e-mail.

9.2 Offline Parameterisation

Offline parameterisation has the following functions:

 Table 14:
 Offline parameterisation

Print	The current parameter set of the parameterisation program is generated as plain text. This can be viewed on the screen, printed or saved as a text file, see <i>Chapter 9.3</i> for more information.
Open file	The parameter set is read in from a file and displayed by the parameterisation program. Parameters are shown an can be modified.
Save file	The parameter set currently active in the parameterisation program is saved under the last used filename. If no file has been saved before the name of the opened file is used.
Save file as	The parameter set currently active in the parameterisation program is saved under a new filename. The user can define the filename in an appropriate menu.

9.2.1 Offline parameterisation: General

The illustration below depicts the principle of offline parameterisation:

Figure 3: Offline parameterisation

To activate offline parameterisation, click on **Options/Communication/Offline-parameterisation**.

You will be asked which *.DCO file to open. Select the corresponding file.

The file *.DCO was generated for a specific type of servo positioning controller of the ARS 2000 series. If it is to be used with another type of controller, select the new type of servo controller now.

Caution!

If you use a DCO file for a different type of device, make sure to check the configurations for rated current, maximum current, current controller and speed controller, to prevent damages to the servo controller/motor!

During offline parameterisation the parameterisation program Metronix ServoCommander[™] may slightly deviate from the process of online parameterisation:

- Certain menus (e.g. firmware download) are inaccessible
- The menu <u>File/Parameter set</u> has different submenus:
- When exiting the program, you will be asked whether the currently open parameter file shall be saved.

Save the parameter set if you have performed your desired changes. In order to become effective load the modified parameter set into the servo positioning controller ARS 2000 (see Chapter 9.1).

9.3 Printing of Parameter Sets

You can print, display and save parameter sets by selecting the menu option <u>File/Parameter</u> set/Print. The following window will open:

Print	
Print positions none all from 40 to 50 Additional information	<mark>Х <u>C</u>lose ?<u>Н</u>еlp</mark>
Page preview	
Print	
Save as text file	

Define in the box **Print positions** which part of the position list is to be printed. The basic parameterisation is always printed. Optionally you can include the positioning data into the printout.

Click on the button Additional information to open a window, where you can enter the following data:

- Commission
- Comments
- Motor data
- Date

📕 Additional info	rmation	X
Command:	Command	<u>✓ </u> <u>о</u> к
Comment 1:	Comment 1	<u>X</u> <u>C</u> ancel
Comment 2:	Comment 2	? <u>H</u> elp
Motor type:	Motor_type	í l
Date:	24.02.2005 10:03:11 Change	

These data will always be used for the print and/or plain text output.

Click on the button **Page preview** to generate a preview of the print on the screen.

Click on the button Print to start the actual printing (with printer selection.)

If you want to print into a file, click the button **Save as text file...** to generate a *.txt file that you can save to disk or process further (e.g. send by e-mail).

Ę	ב
5	٦
4	Ч

By default, the text files are saved in the Metronix ServoCommander subdirectory TXT. (See also *Chapter 3.4.6, Page 29*).

Parameter sets can be printed in online and in offline mode.

10 Errors

10.1 Error Window

The error window is a permanent window in the Metronix ServoCommander[™] parameterisation program. If there is no error, the window is minimised (see illustration).

📲 No errors! 🛛 🖻 🔲 🔀

The error window can be maximised by the following events:

- 1. By clicking the maximisation button
- 2. By selecting the menu item error/error window (only if errors available)
- 3. By clicking the "error window" (second field on the left in the lower status bar)
- 4. Automatically when a fault occurs within the ARS 2000 servo positioning controller
- 5. Automatically in the event of a write or read error of a communication object

10.1.1 Behaviour in the Event of an Error

In the event of an error of the servo positioning controller, the Metronix ServoCommander[™] interface changes in two ways:

- 1. The error window will be maximised and put to the surface
- 2. The error will be stated in red writing on the lower bar

Errors are handled in three steps:

- Error analysis: If the error text does not provide enough information and you require more tips on how to eliminate the error, click on <u>Help</u> in the error window. (In the example given here, the error is caused by a broken/unconnected connection to the angle encoder.)
- 2. Error elimination: Eliminate the cause of the error. (In this example, the correct connection to the angle encoder has to be provided.)
- 3. Error acknowledgement: Click on the **Clear** button in the error window. If the error was successfully eliminated, the window will be minimised. If the error still exists, it will be maximised again.

You can minimise the window by clicking on the **<u>C</u>ancel** button. Any existing error message (see *Chapter 14.2, Page 206*) will remain in the error window on the status bar.

The **<u>C</u>ancel** button does not eliminate any error!

10.2 Error Management

In the **Error / Error management** window, you can define which operating states of the servo positioning controller will cause which reactions. The following window will appear:

You can use this window to define the way the servo positioning controller should respond to an error. Different responses can be assigned to every individual group. First select the group (mouse click) and then assign the responses. The following list shows the responses with a rising priority:

- 1. Entry into buffer: The event will simply be saved in the error buffer. See also *Chapter 10.3, Page 102*). The event will not be displayed and the application continues to run unaffected.
- 2. Warning: The event will displayed briefly on the 7-segment-display of the servo positioning controller.
- 3. Disable servo controller: The application will be stopped with emergency-stop ramp. See also *Chapter 5.2.12, Page 52*).
- 4. Stop at maximum current: The drive will be stopped to standstill with maximum current.
- 5. Disable power stage immediately: The drive will coast down as the power stage is disconnected from power.

Some of the events are so serious, that certain responses cannot be deselected. This is indicated by greyed-out check boxes (see the example: "Disable servo controller", "Warning", "Entry into buffer").

The configuration can be made for error groups only and not for individual error events.

10.3 Error Buffer

The **Error / Error buffer** window shows errors, warnings and events which occurred since the last power-on / reset during the operation of the servo positioning controller. The following information is available:

- Error number
- System time (hours, minutes, seconds)
- Error description (text)
- Constant and free parameter

If you report an error to the Application Engineering, please state the constant and the free parameter!

The window itself does not check whether there are any new errors. If a new error occurs while the window is open, press the **Refresh** button to refresh the error buffer.

Click onto the button **Print** in order to print the list of the selected tab.

Click onto the button Save in order to save the list of the selected tab to a text file.

citor message	Warnings	and events Error message (Service mo	dule)	
Error#	System time	Description	Constant	Free parameter
00-2	2002:54:50	Error cleared	0x8001	0x2
03-0	2002:54:41	Overtemperature motor analog	0x1	0x3F400000
Actual system	time: 20	002:58:30		

The **Error messages** tab shows the events that have been stored in the error buffer: errors, quitting active errors and other entries concerning error messages.

0198

The Warnings and events tab shows the warnings and events stored in the according buffer.

Normally, events play only a secondary role. They can provide additional information in the event of an error. This is why normally you do not have to pay attention to them.

LITUI messal	je marnings	and events Error mocody (convice module)			
	r (150) of 42	.19 >>			
Error#	System time	Description	Constant	Free parameter	
0-2	2002:54:50	Error cleared	0x8001	0x2	
)3-0	2002:54:41	Overtemperature motor analog	0x1	0x3F400000	
)5-3	1998:29:12	Undervoltage dig. I/O	0x4	0x0	
03-0	1997:31:45	Overtemperature motor analog	0x1	0x3F400000	
)0-4	0:00:00	Serial number / device type (change of modules)	0x8001	0xB3A35D8	
)5-4	242:40:24	Overcurrent dig. I/O	0x5	0x0	
)5-4	242:36:59	Overcurrent dig. I/O	0x5	0x0	
)5-4	241:55:45	Overcurrent dig. I/O	0x5	0x0	
)0-2	241:53:46	Error cleared	0x8001	0x4002	
)6-1	241:53:46	Overcurrent breakchopper	0x0	0x6011000	
)0-2	241:53:46	Error cleared	0x8001	0x4002	
)5-0	241:53:45	Internal undervoltage supply 1	0x0	0x5004000	_
NO 0	0.44.50.45	F1	00004	040000	-
Actual syste	m time: 20	02:57:25			

The **Error messages (Service module)** tab shows error messages stored in the service module. Initially, it has to be configured correspondingly. The service module can store more than 7000 error messages. Each 50 messages are combined to a "block".

Error messages are stored to the service module under the condition of an appropriate configuration of an entry. Then, error messages, quitted errors etc. of the internal error buffer of the servo positioning controller are copied to the service module cyclically. The entries of the error buffer of the service module are checked e.g. for invalid entries during each reset. These entries are corrected. The corrected error message and the correction are written to the service module as an error message.

A message is stored in the error buffer of the service module if it is plugged into another servo positioning controller. This allows the user to identify corresponding blocks if the module is plugged and evaluated in another servo positioning controller.

The **Error messages (Service module)** tab additionally contains the buttons << and >>. The button << displays the previous 50 error messages. The button >> displays the next 50 error messages. If no more messages in the specific direction iare available, the corresponding button is disabled.

11 Standard Applications and Metronix ServoCommander Configurations

This chapter describes the following standard applications:

- Speed-controlled mode (see Chapter 11.1 Speed-controlled Mode, Page 105)
- Torque-controlled mode (see Chapter 11.2 Torque-controlled Mode, Page 106)
- Position-controlled mode and positioning mode (see Chapter 11.3 Position-controlled Mode and Positioning Mode, Page 107)
- Homing and positioning (see Chapter 11.3.3 and 11.3.4, Page110)
- Speed synchronous mode (see *Chapter 12.3, Page 137*)
- Position synchronous mode (see Chapter 12.4, Page138)
- Flying saw (product step 3.4) (see Chapter 12.5, Page 139)

The detailed settings of the different modes of operation are made via:

- Setpoint selectors (see Chapter 6.4 Selecting Setpoints, Page 69)
- Actual value selector (see Chapter 5.2.15 Commutation Encoder, Page 56)
- Brake triggering parameter (see Chapter 0, Page 179)

11.1 Speed-controlled Mode

In speed-controlled mode a certain desired speed is set. The servo positioning controller ARS 2000 determines the current actual speed n_actual by evaluating the encoder. To keep the speed setpoint, the current setpoint i_set is determined. In speed-controlled mode there is always a torque or current limitation active.

In order to set the speed-controlled mode, the commands window must be configured as follows:

Commands	
Controller enable	
_Operation mode	
C Torque control	
Speed control	
O Positioning	
Course program	
🗖 Jogging	
Synchronization	
 Synchronized 	
C Flying saw	
Synchronization wizard	
Controller overview	

By selecting **Operating mode/Controller overview** you will get a simplified control depiction for this mode of operation, which details the further navigation:

Controller overview
Operating mode: Speed control
Position control With limitation
Actual values - selector
Incremental encoder emulation
Cancel ? Help

11.2 Torque-controlled Mode

In torque-controlled mode a certain desired torque is set, which the servo positioning controller ARS 2000 generates in the motor. Since the torque is proportional to the motor current, in this case only the current controller is active. In addition, speed limitation is activated for this mode of operation.

By selecting **Operating mode/Controller overview** you will get a simplified control depiction for this mode of operation, which details the further navigation:

In order to set the torque-controlled mode, the Commands have to be configured correspondingly.

The set torque value can be supplied in A or Nm. This selection can be made under **Options/Display units**. The actual values and setpoints menus will then automatically convert to the selected unit.

If the torque is to be set in Nm, the torque constant, i.e. the conversion factor between current and torque must be made known. The torque constant is entered in the menu **Parameters/Device parameters/Motor data** and can in most cases be calculated with the help of the specifications on the type plate of the motor: simply divide the rated torque by the rated current.

A torque constant of 0 Nm/A is inadmissible, if "Torque in Nm" has been activated.

11.3 Position-controlled Mode and Positioning Mode

This chapter provides you with information concerning the following applications:

Homing

п

- Positioning
- Jogging
- Course program

Chapter 12.5 deals with the topic "Flying Saw".

11.3.1 Setting the Operating Mode

In position controlled mode / positioning a superordinated position controller is active in addition to speed-controlled mode, which processes deviations between the set position and the actual position and converts those deviations into the corresponding setpoints for the speed controller. Again, the menu **Operating mode/Controller overview** provides you with a simplified control depiction for this mode of operation:

From the difference between the set position and the actual position, the position controller calculates a correction speed, which is passed on to the speed controller as the setpoint.

The position controller usually operates in connection with the positioning control or the synchronisation control. It is a P-controller with parameterisable input and output levels.

There are two ways of parameterizing the position controller (see Chapter 5.2.22.2, Page 63):

- Via the menu option <u>Parameters/Controller Parameters/Position controller</u>
- In the Controller overview window by clicking on the corresponding position controller button.

Correctly set current and speed controllers are required for adjusting the position controller.

The position control is activated by selecting the corresponding mode of operation in the Commands window:
Commands	
Controller enable	
Operation mode	1
C Torque control	
 Positioning 	
Course program	
Jogging	
Synchronization	
 Orr C Synchronized 	
O Flying saw	
Synchronization wizard	
Controller overview	

The settings of the setpoint ramps have no influence onto the profiles during homing resp. positioning.

11.3.2 Global Positioning Settings

Some basic parameters have to be set for position-controlled mode or positioning applications. Open the following window by **Parameter/Positioning/Global positioning Settings**:

Global Positioning Settings	
Positioning range	
Minimum value	-2147483648,00 R
Maximum value	2147483647,00 R
Course program	
Course program active	
Digital inputs	Conflict detection
Positionning set HOME	0
Positioning set START	0
H	oming
O Destinatio	n parameters
✓ <u>O</u> K X <u>C</u> a	ncel ? <u>H</u> elp

In the case of absolute positioning, each new destination is checked for keeping within the limits of the absolute positioning range. The parameters **Minimum value** and **Maximum value** in the field **Positioning range** show the absolute positioning limits for the set position and the actual position. The positioning range always relates to the zero position of the drive (see also *Chapter 11.3.3 Homing, Page 110*).

The possible settings in the **Course program** section are described in *Chapter 11.3.5, Page 129*. The buttons **Homing** and **Destination parameters** open new windows.

11.3.3 Homing

In most applications, in which the servo positioning controller ARS 2000 works in positioning mode, a zero position must be defined, which the position controller can use as a reference. This position is called **Home position** and must be newly determined each time the controller is switched on. This is done in the so called **Homing**. A number of different methods are available.

The Homing is started by setting the output stage and controller enabling, via field bus or a digital input. The successful completion of the run is indicated by a set status bit inside the device. This status can be evaluated via field bus or a digital output.

11.3.3.1 Homing Methods / Overview

In general homing can be described as follows: The drive moves into a defined **Direction** to a **Destination**. In most case the direction is inverted there. There is an additional **Home position** in order to increase the accuracy. In some cases this home position allows a higher position resolution than the destination. Depending on the method the drive system defines this home position.

Inside of this general description there are a number of variants. The following table roughly divides the homing methods by destination and home position. Take a detailed description from the following chapters.

Destination	Home position	Methods
End stop	End stop	-18, -17
End stop	Index pulse	-1, -2
Limit switch	Limit switch	17, 18
Limit switch	Index pulse	1, 2
Home switch	Home switch	-23, -27, 23, 27
Home switch	Index pulse	7, 8, 10, 11, 12, 14
Index pulse	Index pulse	23, 33
Current position		34

Table 15: H	loming	modes
-------------	--------	-------

11.3.3.1.1 Method 1: Negative Limit Switch and Index Pulse

With this method, the drive drives at search speed in negative direction until it reaches the negative limit switch. This is indicated in the illustration by the rising edge. The drive then moves back at crawl speed and searches for the exact position of the limit switch. The zero position refers to the first index pulse of the angle encoder in the positive direction from the limit switch.

Figure 4: Homing to the negative limit switch with evaluation of the index pulse

11.3.3.1.2 Method 2: Positive Limit Switch and Index Pulse

With this method, the drive moves at search speed in positive direction until it reaches the positive limit switch. This is indicated in the illustration by the rising edge. The drive then moves back at crawl speed and searches for the exact position of the limit switch. The zero position refers to the first index pulse of the angle encoder in the positive direction from the limit switch.

Figure 5: Homing to the positive limit switch with evaluation of the index pulse

11.3.3.1.3 Methods 7 and 11: Homing on Home Switch and Index Pulse

These two methods use the home switch, which is only active for part of the distance. These reference methods are particularly suitable for rotary axis applications, where the home switch is activated once per rotation.

With method 7 the drive at first moves in positive direction and with method 11 in negative direction. Depending on the direction, the zero position refers to the first index pulse in negative or positive direction from the home switch. This is shown in the following two illustrations.

Figure 6: Homing on home switch with evaluation of the index pulse in the case of an initially positive movement

In the case of Homings to the reference switch the limit switches will reverse the direction of rotation. A reference switch is therefore also found, if upon the start of the Homing, the drive moves away from the reference switch.

Figure 7: Homing on home switch with evaluation of the index pulse in the case of an initially negative movement

11.3.3.1.4 Method 17: Homing on the Negative Limit Switch

With this method, the drive moves at search speed in negative direction until it reaches the negative limit switch. This is indicated in the illustration by the rising edge. The drive then moves back at crawl speed and searches for the exact position of the limit switch. The zero position refers to falling edge from the negative limit switch.

Figure 8: Homing on negative limit switch

11.3.3.1.5 Method 18: Homing on the Positive Limit Switch

With this method, the drive moves at search speed in positive direction until it reaches the positive limit switch. This is indicated in the illustration by the rising edge. The drive then moves back at crawl speed and searches for the exact position of the limit switch. The zero position refers to falling edge from the positive limit switch.

Figure 9: Homing on positive limit switch

11.3.3.1.6 Methods 23 and 27: Homing on Homing Switch

These two methods use the home switch, which is only active for part of the distance. These reference methods are particularly suitable for Rotary axis applications, where the home switch is activated once per rotation.

With method 23 the drive at first moves in positive direction and with method 27 in negative direction. The zero position refers to edge from the home switch. This is shown in the following two illustrations.

Figure 10: Homing on home switch with positive initial movement

Figure 11: Homing to the home switch with negative initial movement

11.3.3.1.7 Methods -23 and -27: Homing on Homing Switch

These methods are similar to the methods 23 and 27. But here, first, the drives moves to the end of the moving area which is defined by an end stop or a limit switch. Then, the drives searches for the homing switch. By this, more than one switch can be connected to the same input for the homing switch. Then, the "last" switch in search direction is applied as homing switch for the homing procedure.

The drive moves in positive direction first is method -23 is selected. It moves in negative direction first if method -27 is selected. The homing position refers to the edge of the home switch, see *Chapter 11.3.3.1.6*.

11.3.3.1.8 Methods 32 and 33: Homing on Index Pulse

In the case of methods 32 and 33 the direction of the Homing is negative or positive. The zero position refers to the first index pulse from the angle encoder in the direction of search.

Figure 12: Homing on the index pulse

11.3.3.1.9 Method 34: Homing on the Current Position

With method 34 the zero position refers to the current position.

11.3.3.1.10 Method -1: Negative End Stop and Index Pulse

With this method the drive moves in negative direction until it comes to the end stop. In general, the I²t-value has to increase by 50 % from the current value at the start of homing in order to detect the end stop. The end stop must be mechanically dimensioned in a way that it will not be damaged by the parameterised maximum current. The zero position refers to the first index pulse of the angle encoder in positive direction from the end stop.

11.3.3.1.11 Method -2: Positive End Stop and Index Pulse

With this method the drive moves in positive direction until it comes to the end stop. In general, the l²t-value has to increase by 50 % from the current value at the start of homing in order to detect the end stop. The end stop must be mechanically dimensioned in a way that it will not be damaged by the parameterised maximum current. The zero position refers to the first index pulse of the angle encoder in negative direction from the end stop.

Figure 14: Homing to the positive end stop with index pulse evaluation

11.3.3.1.12 Method -17: Homing to the Negative End Stop

With this method the drive moves in negative direction until it comes to the end stop. In general, the I²t-value has to increase by 50 % from the current value at the start of homing in order to detect the end stop. The end stop must be mechanically dimensioned in a way that it will not be damaged by the parameterised maximum current. The zero position refers directly to the end stop.

Figure 15: Homing to the negative end stop

11.3.3.1.13 Method -18: Homing to the Positive End Stop

With this method the drive moves in positive direction until it comes to the end stop. In general, the l²t-value has to increase by 50 % from the current value at the start of homing in order to detect the end stop. The end stop must be mechanically dimensioned in a way that it will not be damaged by the parameterised maximum current. The zero position refers directly to the end stop.

Figure 16: Homing to the positive end stop

11.3.3.2 Parameterisation of the Homing Method

The Homing method is parameterised in the menu Reference position, which is accessed via **<u>Parameters/Positioning/Reference position</u>** or via the REF button in the icon bar.

The following window will appear:

Homing position		
Mode Settings Driv	ving profile Index pulse control	
Mode:		-
Destination:	Limit switch	
Home position:	Index pulse	
Direction:	negative	
Mode: 1		
Posi	tioning settings	GO!
<u>O</u> K	X Cancel ? Help	

Here, select your homing method (see also Chapter 11.3.3.1).

11.3.3.3 Homing: Settings

The following window appears under the tab Settings:

Homing position	
Mode Settings Driving profile Index pulse control	1
 Homing at power and controller enable Go to zero position after homing Homing switch at index pulse track of X2B Timeout-Watch Timeout-Time 60000,00 ms Image: A state of the commutation offset 	max. homing distance permitted Max. position limits 100,000 R Offset start position
□ No synchronization during the homing	
Type of homing switch © Opener © Shutter	
Positioning settings	GO!
<u>✓ <u>0</u>K <u>X</u> <u>C</u>ancel ?</u>	<u>H</u> elp

The parameters have the following meaning:

Homing at power and controller enable

If this option is selected, the homing run will always be started automatically if the power stage and controller enabling signal are applied both after disabling the power stage.

Go to zero position after homing

If this option is selected, the drive will move to the zero position at driving speed when the destination and the home position of the homing run have been reached.

Homing switch at index pulse track of X2B

If this option is active, an index pulse of X2B will be evaluated as a homing pulse.

Timeout-Watch

If this option is active, the time will be monitored. If homing takes longer than specified, an error will be generated. At present, the time is monitored at intervals of 10 ms.

Timeout-Time

The time for the timeout-watch can be set in this field.

* No homing after detection of the commutation offset

This option is only effective, if there is a encoder without commutation information. Normally a homing takes place, after the commutation information is found out. To suppress this homing run, activate this check box.

No synchronization during homing

If the drive is a slave within a synchronized application, the synchronization will be suppressed during the homing run.

Type of homing switch

Please state whether your homing switch is a normally closed contact or a normally opened contact.

Max. homing distance permitted

You can define a maximum search distance. If the system cannot detect any target signals (e.g. a limit switch) or the home position within this search distance, it will issue an error message.

Max. position limits

Clicking on this button the maximum homing distance is calculated from the maximum position limits.

Offset start position

The actual home position - i.e. the mathematical zero point for the positioning run that follows - is slightly offset from the home position of the homing run. This offset is indicated under **Offset start position**.

Basic parameters (encoders with EEPROM only)

After a successful homing, use this button to actualise and save the zero offset stored in the EEPROM of the angle encoder. Here, all parameters which are saved in the encoder

are also overwritten with current values. Another menu opens when clicking on the button:

C Save parameters to encoder	
• Save parameters to encoder, inclusive offset	

Choose the option "Save parameters to encoder, inclusive offset". Then, if a multiturn absolute value encoder is applied, the actual position is not lost even if the supply voltage is switched off.

11.3.3.4 Homing: Profile

Here, enter speed, acceleration and jerkfree part for the following phases:

- Search: Run of drive towards destination (limit switch, home switch, end stop)
- Crawl: Reverse run (at slow speed) to determine contact threshold
- Running: Optional run to zero point (reference point) of application

Homing position Mode Settings Dri	ving profile Index p	ulse control		
Speed Search 439,941 rpm 4 199,951 rpm < Bunning 100,000 rpm	Acceleration Search 100 rpm/s Crawl 100 rpm/s Crawl 100 rpm/s Crawl	100 rpm/s 100 rpm/s 10000 rpm/s	Jerkfree Search 0,0 ms 4 > Crawl 0,0 ms 4 > Running 0,0 ms 4 >	Times 4399,4 ms 1999,5 ms 10,0 ms
Pos	itioning settings	XX	GO!	
<u>✓ <u>о</u>к</u>	X <u>C</u> ancel	<u>?</u> <u>H</u> elp		

11.3.3.4.1 Homing: Index Pulse Control

The zero pulse control is important, if a destination other than "index pulse" has been selected and the reference is the "index pulse". If the destination is very close to the index pulse, a slight modification in the mechanics can provoke that during the next homing the index pulse is taken as a reference position "in front of" or "behind" the original index pulse. The zero pulse control displays the distance between the destination and the index pulse. The following window will appear:

ning position ode Settings Driving profile Index pu	se control	
ndex pulse control		
	X_POS	Positive direction
	X_DEST	Limit switch
	X_0	Index pulse
	X_DELTA	Difference between index pulse and Limit switch
Actual value for X_DELTA (100% = 1 revolution):	Undefined va homing succ	alue, because no essfully completed!
Submit warning at X_DELTA less than:	25,60 %	-
Positioning settings		ğ GD!
OK X Cancel	🤈 н	elp

You can display the current distance between destination and index pulse and also parameterise a threshold, where a warning is issued in the case of a short-fall. 100% are one revolution. The error message looks as follows:

11.3.3.4.2 Tab: Torques

Optionally, the conventional homing method "Stop" can be elaborated by "homing on a comparison torque". Then, the destination of the homing procedure is detected by reaching the given comparison torque. In contradiction to that, the criterion of 50 % of raise of the i²t-value is not taken any more.

Another tab "Torques" with a link to it is offered if the method "Stop" is selected.

de Settings	Driving profile	Index pulse control	Torques	Flying referencing	
Torque threshol Threshold value Tolerance time	d (destination = 1,00 A ↓ 0,00 n	• block)	<u>د</u> ع	omparison torque for top" mode]
	141				

Enter the reference value of the comparison torque in the field **Threshold value**. Reaching this value is monitored during homing. Reaching the reference torque will be ignored during the **tolerance time**.

This functionality is enabled for the homing procedure by marking the checkbox Comparison torque for "stop" mode.

11.3.3.4.3 Tab: Flying referencing

This menu activates a functionality of which its effect is similar to a homing procedure.

oming p	osition					
lode	Settings	Driving profile	Index pulse control	Flying referencing		
v	Flying ref	erencing				
0				mm		
1		Positioning setti	ngs	<u>*11</u>	G0!	
	<u>o</u> k	X G	ancel 7	Help		

The checkbox activates the functionality "flying referencing".

"Flying referencing" may avoid accumulating errors in "endless" applications. Here, a rising edge at the digital input SAMPLE sets the position setpoint and actual value to zero. The functionality is similar to a rotary axis application where the position overflow / underflow is externally triggered.

As far as the homing is concerned the following items should be taken into account:

- Applying so called absolute value encoders (encoders with serial interface e.g. HIPERFACE, EnDat) no homing after reset is required. The absolute position is always read from the encoder. But homing may be useful during the first set-up of the application in order to set the absolute position calculated to a specific position. Here, an internal zero position shift is calculated. This can be saved to the EEPROM of the encoder in order to maintain this unchanged after each reset. As an alternative, the motor shaft may be rotated in that way, so that the actual position has the desired value before mounting the motor to the drive.
- The speed during homing should be chosen in a way that the index marker can be detected during the homing run of the drive. Sometimes very slow speeds are required to fulfil this.
- The acceleration should be sufficiently high, so that the servo positioning controller does not exceed the targets to far during the direction inversion.
- After finishing the homing, the drive does not always stand on the zero position which depends on the selected homing method. A known difference to the index pulse is considered during the calculation if it is the reference of the homing process. Only after a final run to the zero position the drive is then also physically on the zero

position

11.3.4 Positioning

The servo positioning controller ARS 2000 has a table of 256 positions, which can be used to parameterise destinations in advance. There are further positioning sets for field bus and jogging mode.

11.3.4.1 <u>Destination Parameters: General Buttons</u>

Parameterize the destinations in menu **<u>P</u>arameters**/<u>**P**</u>**ositioning**/**Destination parameters**. This menu has the following general buttons:

*	Positioning settings				Сору			60!
✓	<u>o</u> k	×	<u>C</u> ancel	?	<u>H</u> elp			

General positioning settings (e.g. position limits) can be modified via the button **Positioning settings** (see *Chapter 11.3.2*).

The complete settings of one destination can be copied from one destination to another destination by the button **Copy**. The following menu appears:

Copy parameters of position		
Copy parameters from position	POS 0 💌	<mark>✓ <u>о</u>к</mark>
to position	P0S 2 •	<u>× E</u> xit
🔽 range to	POS 12	<u>? H</u> elp
		j

You can copy a source position to single target positions. Enter the upper two fields. If you want to copy a source to several positions select the check box **range to...** Enter the last destination position in the third field.

Click on the button GO! to go to start a positioning to the currently displayed destination.

11.3.4.1.1 Tab: Settings

The destination positions are parameterised under <u>Parameters/Positioning/Destination</u> parameters. The window shown below will appear with the <u>Settings</u> tab selected:

Destination parameters		
Destination	Settings Driving profile Course program	Experts
Position POS 0 POS 1 POS 2 POS 3 POS 4 POS 5	Positioning relative relative to last destination absolute Signals	"Start" during positioning run © Ignore start command © First go to old target © Immediately go to new target Torque feed forward
POS 6 POS 6 POS 7 POS 8 POS 9 POS 10 POS 11 POS 12 POS 13 POS 14 POS 15	Remaining 0,00 R distance	Factor 0,00 A/(rpm) Start delay 0,000 s
C CAN-bus	Stop also at "Final speed" other the	an Null
O Jogging TIPP 0 (pos) TIPP 1 (neg)		
Positioning s	ettings Copy	GD!
<u>✓ о</u> к 🗴	<u>C</u> ancel ? <u>H</u> elp	

The left field **Destination** shows a list of the destinations, which can be parameterised.

In the field **Positioning run** you can select, whether the destination shall be interpreted as being **absolute** (referring to the reference point) or relative. **Relative** refers to the current set position, for example for an ongoing positioning run. The option **relative to last destination** on the other hand calculates the new position based on the currently approached position or the destination to be approached.

The option **relative** yields different results, depending on the setting in the field **Start during positioning run** (see below). If the combination **relative/Wait for end of positioning run** has been selected, the new position refers to the destination position.

With the combination of **relative/Interrupt actual positioning run** the new destination position is calculated based on the current set position.

The field **Start during positioning run** determines the behavior of the servo controller if a positioning procedure goes on while the start command for a new destination position is received. It offers the following options:

- Ignore start command: The positioning order for the new position can only be selected and started after the previous positioning has been completed.
- First go to old target: The ongoing positioning is completed and the new positioning is then started. The next positioning can be selected prior to the ongoing positioning. It is then started automatically after the ongoing position has been completed. When starting a relative positioning the reference position for "relative" is in general the last target position.
- Immediately go to new target: The current positioning is interrupted and the new position is approached immediately. If the positioning mode is "relative" the reference position for the calculation of the new target position is the currently active position setpoint. In contrast to that the reference position for the option "relative to the last destination" is the (old) target position of the currently interrupted positioning cycle.

The field **Torque feed forward** allows higher dynamics during the positioning procedures. The variable can be experimentally determined. The default setting is 0.

	1
ſ	
	5

Note that a bouncing switch at the digital start input can cause problems, if "Wait for end of positioning run" or "Interrupt actual positioning run" is allowed during relative positioning. The drive may then move a little too far!

The **Start delay** input field is used to define a delay which passes after the start command of a positioning before the desired position is approached.

In the field **Messages** you can parameterise trigger messages, which are issued via field bus or a digital output. These trigger messages show the remaining distance to the end of an ongoing positioning run (see also *Chapter 13.10 Digital Outputs, Page 175*).

The **synchronized** check box is used for the application "Flying Saw". By starting a position set the synchronisation is activated or deactivated if the mode "Flying Saw" is active. With active synchronisation the position of the selected encoder for synchronisation (Master) is added to the position setpoint. Then, the drive follows the position of the Master drive.

Check box active: The synchronisation is switched on simultaneously to the start of the positioning if it has not been active before. If the Master is not at standstill the arising offset is balanced in a controlled manner. The applied running speed meets the speed of the Master plus the running speed entry of the position set as speed override. The entries of the started position set are also applied for the accelerations.

Check box inactive: The synchronisation is switched off simultaneously to the start of the positioning if it has not been inactive before. The positioning starts at the current speed setpoint which is the speed of the master. So the synchronized state is left in a controlled manner.

In most cases, the option **Stop also at "Final Speed" other than zero** makes sense only for position sequences. It means that the next position will be approached immediately after a position has been reached. If the function mentioned above is active and a final speed <> 0 has been parameterised, the drive will stop provided that no follow-up positioning has been requested.

11.3.4.1.2 Tab: Driving Profile

Destination parameters	
Destination	Settings Driving profile Course program Experts
Position	Destination Positioning range (Input limits)
POS 0 POS 1 POS 2 POS 3	Jerkfree positioning
POS 4 POS 5 POS 6 POS 7	0,00 ms
POS 8 POS 9 POS 10	Speed Running speed Final spee
POS 11 POS 12 POS 13 POS 14	1000,000 rpm 0,000 rpm
POS 15 POS 16	Acceleration Times Acceleration Acceleration time
C CAN-bus	20000 rpm/s 50,0 ms
C Jogging	Deceleration time
TIPP 0 (pos) TIPP 1 (neg)	10000 rpm/s 100,0 ms
Positioning s	ettings 📕 Copy 🚺 GO!
<u>✓ <u>0</u>K X</u>	<u>Cancel</u>

In the field **Destination** you can enter the target position. The target position is interpreted differently, depending on whether absolute or relative positioning has been selected (see **Settings** tab).

The positioning process is smoothed by a filter to eliminate jerks. Enter the filter time constant in the field **Jerkfree positioning**. The acceleration process as well as the deceleration process is extended by this time. The complete duration of the positioning process is also extended by this filter time. In some cases, e.g. for an oversteering, i.e. Jerkfree positioning > acceleration / deceleration time the entered profile velocity will not be reached.

In the field **Speed** you can enter the Running speed, at which the drive moves towards the target. The **Final speed** determines the speed at which the drive shall approach the target upon reaching it. In most cases it is set to zero. With a set final speed other than zero, the profile is calculated in a way that the drive upon reaching the target position has the set final speed and optionally keeps going at that speed.

The illustration below shows a profile in which the final speed upon reaching Position 1 has been set to a speed of v1.

Figure 17: Positioning: Driving profile

In the fields **Acceleration** and **Deceleration** the accelerations for starting and braking can be set. The field **Times** displays the resulting times.

11.3.4.1.3 Tab: Experts

Destination parameters			
Destination	Settings Driving profile Course program Experts		
Position	Destination is acquired		
POS 0 POS 1 POS 2 POS 3	From the position set		
POS 4 POS 5 POS 6 POS 7	□ SW limit switch as target position □ Drive is not allowed to run go backwards to target		
POS 8 POS 9 POS 10 POS 11 POS 12	SW limit switches may be passed over Start a continuous positioning		
POS 12 POS 13 POS 14 POS 15 POS 16	Torque limitation Tolerance time 5,00 A 0,00 ms 4 >		
C CAN-bus	✓ Torque limitation active		
C PROFIBUS			
C Jogging TIPP 0 (pos) TIPP 1 (neg)			
Positioning se	ettings 📔 Copy 🖾 GO!		
<u>✓ <u>0</u>K X</u>	Cancel ? Help		

You enter the source for the destination of the actual positioning process in the field **Destination is acquired..**:

from the position set:	This is the standard setting. The position set on the Driving profile tab	
	will be used as the destination.	
from analogue input	The current value of the analogue input will be translated into a	
AINO:	destination. See also the menu Analogue inputs.	

Assign to the positioning process a fixed direction via the input field **Rotating direction**. This option becomes effective in combination with other options e.g. SW limit switch as target position. For normal relative or absolute positioning processes the positioning control determines the rotating direction itself. Available are:

positive:	The drive always moves in the direction of the positive limit switch, regardless of the target position value. Normally, this option only makes sense combined with the option SW-limit switch as target position (jogging mode).
negative:	The drive always moves in the direction of the negative limit switch, regardless of the target position value. Normally, this option only makes sense combined with the option SW-limit switch as target position (jogging mode).
auto(matic):	This is the standard setting. The direction of movement will be determined automatically using the current position, the target position and the additional options (absolute , relative , relative to last destination etc.).

Normally, the option **SW limit switch as target position** is used only for jogging mode position sets. Depending on the selected direction, either the negative or the positive end of the positioning range

will be entered as the target position. Attention! This option has a higher priority than **Destination is** acquired... from analogue input AINO.

In some cases it might be desirable to stop the drive as quickly as possible in the positioning mode. This happens, for example, during the synchronization in the "flying saw" application. The position set for synchronization can configured with "relative positioning, destination 0", for instance. If the drive is still moving when this position set is started, the drive goes past the target and has to reach the target by moving backwards. This behaviour is suppressed by the option **Drive is not allowed to run go backwards to target**.

Normally, the firmware checks whether the current position or the position to be approached lies within the authorized positioning range. If the function **SW-limit switches may be passed over** is active, the monitoring process is deactivated. In this case the user has to ensure that no damages may be caused. This option should be applied in special cases only.

Normally, the option **Start a continuous positioning** only makes sense if the option **from analogue input AIN0** has been selected under **Destination acquired...** If this option is active, the positioning start command will be performed continuously in the firmware which means that the drive will continuously try to approach the position from AIN0, for example. Otherwise, the position would be adopted only when the start command is issued. A result of this option is that the current positioning is not completed. The message "target reached" is not generated. Accordingly, another positioning can only be started if it has the starting option "Immediately go to new target".

A torque limitation can be performed in the positioning set if regarded.

As an alternative for the target reached event the torque limit can be configured. If this feature is needed, the item torque limitation active must be passive. If the tolerance time is higher than 0 the torque limitation becomes active after this time is elapsed. This allows accelerations with higher torque for the previous mentioned tolerance time. If the torque is reached or, if necessary, the tolerance time is elapsed, the target reached message is generated. The drive finishes the positioning and sets its position setpoint to the actual position. If the target position contained in the positioning set is reached the target reached messages is also set. For further information as far as a positioning to a torque is concerned contact the technical support.

11.3.4.2 Go to Destinations

There are different possibilities of selecting destinations and starting the positioning process:

- Via digital inputs
- Via the serial interface
- Via field bus

11.3.4.2.1 Positioning via Digital Inputs

The individual destinations are selected via digital inputs. A rising edge at the digital input selected for the start of a positioning takes over the destination and starts the positioning run.

The base devices of the ARS 2000 series have 4 digital inputs (DIN0...DIN3) for the target selection of 16 positions. To approach further target positions via digital inputs there is the option of inserting up to two EA88 extension modules with 8 additional inputs and outputs each. This allows direct access to all 256 positions. It is also possible to change the default function assignments of the base device's digital inputs. Depending on the application the other digital inputs can also be used for the positioning selection.

Default settings for the positioning selection via digital inputs:

Digital input			Position	
DIN3	DIN2	DIN1	DIN0	selector
Bit3	Bit2	Bit1	Bit0	
0	0	0	0	0
0	0	0	1	1
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	1	1	0	14
1	1	1	1	15

 Table 16:
 Positioning via digital inputs

11.3.4.2.2 Positioning via RS232 (Serial Interface)

All 256 positions can be approached via the serial interface. Additionally, one position set is reserved for interfacing via RS232. The command syntax for the parameterisation of these positions as well as starting the positioning run is described in the Application Note RS232 commands for ARS 2000.

The run to the destinations and Homing can be initiated via Metronix ServoCommanderTM. To do so, activate the menu option <u>Parameters/Positioning/Go to destination</u>:

Go to destination	
Go to destination	Jogging
<u>0</u> <u>1</u> <u>2</u> <u>3</u>	┥ left 🛛 right 🕨
<u>4</u> <u>5</u> <u>6</u> <u>7</u>	Save actual position to
<u>8</u> 91011	158
12 13 14 15	
other destination:	
0 🔣 GO!	save
Start Homing	
✓ <u>O</u> K ? <u>H</u> elp	

Go to destination

- Go to destination: Click on the buttons to drive to the desired positions.
- Other destination: Enter the position number and click on the GO! button to drive to the corresponding position.
- Start Homing: Click on the button to start the homing run.

Jogging: Use the buttons **left** and **right** to move the drive to the desired position. The drive stops when you release the buttons.

Save actual position to position...: You can save the current actual position as a destination in a position set. Select the position set number from the scroll box and click on the **save** button.

11.3.5 Course Program

11.3.5.1 <u>Overview</u>

A course program allows several position sets to be linked together in one sequence. These positions will be approached one after the other.

Features:

- All positions can be linked in a course program
- Apart from linear sequences, which are terminated sooner or later, circular linking is also possible
- Up to 2 following positions can be set for each course program step (position). As a result, a course program can include branching. Branching occurs depending on the logic status of digital inputs.
- The course program can control two digital outputs. For this purpose, every course program step offers four different options (on, off, target reached, remaining distance message)
- A course program can be started through two standard entry points or through any position. This is done via digital inputs or the serial interface.

A course program can be created and monitored in a comfortable manner in the parameterisation interface. The application created is saved in the parameter set and can be transferred to other servo positioning controllers.

11.3.5.2 Global Settings

The global settings for the course program have to be made in the menu

Parameters/Positioning/Global positioning settings (see also *Chapter 11.3.2*). The window includes the following section which is relevant for the course program:

Course program Image: Course program active	
Digital inputs	Conflict detection
Positionning set HOME	0
Positioning set START	0

The **Course program active** check box determines whether positions will be linked in general or not. The element is identical with the **Course program** check box in the command window.

The inputs fields **Positioning set HOME** and **Positioning set START** can be used to define entry points into the course program. In order to link the positioning sets with corresponding digital inputs, click on the **Digital inputs** button (see *Chapter 11.3.5.4, Page 132*).

11.3.5.3 Linking Positions

In the menu **Parameters\Positioning\Destination parameters**, the **Course program** tab shows the following window:

Destination parameters	5
Destination POS 0 POS 1 POS 2 POS 3 POS 4 POS 4 POS 6	Settings Driving profile Course program Following Position
POS 6 POS 7 POS 8 POS 9 POS 10 POS 11 POS 12 POS 13 POS 14 POS 15	Reaction concerning NEXT1/NEXT2-signal C Ignore C Final position (ignore following position) C Go to "Following position 1" C Ignore, if target is not yet reached
POS 16	Evaluate For to following position immediately First go to target, then to following position Beaction concerning STOP-Signal
C Jogging TIPP 0 (pos) TIPP 1 (neg)	☐ Ignore STOP signal for this position (signal is saved)
Positioning s	ettings Copy GO!

Here you can link the positions. You can enter two following positions for every position (fields: **Following position 1** and **Following position 2**). The section below defines whether and how the positions will be approached. This is explained with the following example:

Position 4:	Following position 1 (NEXT1) = 19	Digital input DIN0
	Following position 2 (NEXT2) = 20	Digital input DIN1

The assignment of the **NEXT1/NEXT2** signals to the digital inputs DIN0 and DIN1 is explained in *Chapter 11.3.5.4,Page 132*).

Option	Meaning	Example (see window)	
Ignore NEXT1/NEXT2: Final position	This is the last position in the course program.	The course program stops after position 4 has been reached.	
Ignore NEXT1/NEXT2: Go to "Following position 1"	The course program is performed in a linear manner. Following position 1 will be approached.	After position 4, position 19 will be approached immediately.	
Ignore if target is not yet reached The digital inputs NEXT1 and NE will be evaluated (branching). If the current positioning is not complete		As long as position 4 is not reached, edge changes from DIN0 and DIN1 will be ignored.	
	the digital inputs will be ignored.	Once position 4 has been reached, DIN0 causes the drive to approach position 19 whereas DIN1 would cause the drive to approach position 20.	
Evaluate: Go to following position immediately	The digital inputs NEXT1 and NEXT2 will be evaluated (branching). If the system detects a signal edge, the current positioning run may be interrupted and the drive may immediately go to the new target position.	If DIN0 is set, position 19 will be approached whereas DIN1 would cause the drive to go to position 20.	
Evaluate: First go to target, then to following position	The digital inputs NEXT1 and NEXT2 will be evaluated (branching). If the current positioning run is not completed and the system detects a signal edge, the drive will first go to the current position. Then a new target position will be approached. If there are several signal edges during the current positioning run, the last signal edge will be valid.	Once position 4 has been reached, DIN0 causes the drive to approach position 19 whereas DIN1 would cause the drive to approach position 20. During the current positioning run 4, a signal edge first occurs at DIN0 and then also at DIN1. Then, after target position 4 has been reached, the positioning run of position 20 will be started.	

 Table 17:
 Following position NEXT1/NEXT2: Examples

The course program stops when a final position is reached or a stop signal is detected. The assignment of the stop signal is explained in *Chapter 11.3.5.4 Digital Inputs, Page 132*).

In some cases it may be better to ignore the stop signal for certain positions as the course program as a whole should be stopped but not in this particular position. In this case, check the check box **Ignore STOP signal for this position** for this particular position. The drive will go to the next position and then it will stop (provided this option has not been set for this position, too).

11.3.5.4 Digital Inputs

You can make the following assignments on the **Course program** tab in the menu **Parameters\IOs\Digital inputs**:

Digital inputs		
General Course program Jogg	jing	
Course program control		
HOME Go to HOME-position	DIN 0	
START Go to START-position	DIN 1	
NEXT1 Go to following position 1	DIN 2	
NEXT2 Go to following position 2	DIN 3	
Stop	DIN AIN 1 (inactive)	
Combined Start/Stop	DIN AIN 2 (inactive)	
✓ <u>O</u> K <u>X</u> ancel	? <u>H</u> elp	Display digital inputs

You can define the two digital inputs triggering the entry in the course program in the fields **HOME** and **START**.

The fields **NEXT1** and **NEXT2** are used to define the two digital inputs responsible for position branching.

In the **STOP** field you define the digital input for stopping the course program.

In the **Combined Start/Stop** field you define the digital input for starting and stopping the course program.

11.3.6 Jogging Mode

Jogging is the controlled driving of a drive to a specific position. The drive continues to move as long as a certain input signal is active.

The ARS 2000 servo positioning controller supports jogging in a positive and negative direction. You can define a separate running speed and separate accelerations for every directions. In addition, you can assign one input for jogging in a positive direction and one input for jogging in a negative direction.

The jogging mode has to be activated in the Commands window:

Commands	
Controller enable	
Operation mode C Torque control	
C Speed control	
 Positioning Course program 	
✓ Jogging	
Synchronization © Off	
O Synchronized	
O Flying saw	
Synchronization wizard	
Controller overview	

The running speed and the accelerations in a positive and negative direction are parameterised in the position window (**Parameters/Positioning/Destination parameters**):

Destination parameter	5
Destination	Driving profile
C Position	
POS 1 POS 2 POS 3	Speed
POS 4 POS 5	Running speed
POS 6 POS 7 POS 8	
POS 9 POS 10 POS 11	
POS 12 POS 13 POS 14	
POS 14 POS 15 POS 16	Acceleration Times
C CAN-bus	1000 rpm/s 100,0 ms
C PROFIBUS	Deceleration time
 Jogging TIPP 0 (pos) 	1000 rpm/s 100,0 ms
TIPP 1 (neg)	
Positioning s	settings 📄 Copy 🔣 GO!
<u>✓ <u>о</u>к Х</u>	<u>C</u> ancel ? <u>H</u> elp

The digital inputs are assigned in the window Parameters/IOs/Digital inputs on the Jogging tab:

Digital inputs		
General Cours	e program	Jogging
Directions		
negative	DIN 0	•
positive	DIN 1	

11.3.7 Configuration of Digital Outputs

Setting digital outputs (**<u>P</u>arameters/<u>I</u>Os/Digital outputs**) in positioning mode can tell a superordinated control that a positioning process is being/has been completed:

- 1st possibility: position setpoint = target position
- 2^{nd} possibility: Actual position = target position
- 3rd possibility: Remaining distance to the end of the positioning procedure reached
- 4th possibility: Homing position valid
- 5th possibility: Position trigger

Digital outp	ıts			
Standard outputs				
DOUT O	Servo controller operational			
DOUT 1	Position Xset = Xdest			
DOUT 2	DOUT 2 Position Xact = Xdest			
DOUT 3	Remaining distance			
V OK Y Cancel 2 Help				
<u>v o</u> r				

The configuration of the digital outputs is described in Chapter 13.10, Page 175).

For the 2nd possibility (actual position = target position) a tolerance window can be defined, the limits of which are used to set the digital output (see *Chapter 13.10.2 Configuration of the Messages for the Digital* **Outputs**, *Page 177*).

For possibilities 3 you can parameterise trigger messages in the field Messages under **Parameters/Positioning/Destination parameters**, which will be issued via a digital output. These trigger messages show the remaining distance to the end of an ongoing positioning (*Chapter 13.10 Digital Outputs, Page 175*).

12 Applications with Several Angle Encoders

Chapter 11 deals with applications with only one single angle encoder. It supplies the information concerning the commutation position, the actual speed and the actual position value. These information paths can be separated as of firmware product step 3.2. Open menu **Operating mode /Encoder selection**:

Encoder selection	
Settings	Drive and encoder
<u>V OK</u> <u>X Cancel</u> <u>? H</u> elp	

IJ

The encoder selected in the "Commutating-encoder" field is also used to determine the actual speed value!

The application of a separate angle encoder for the position is for example useful in following cases:

The motor is coupled to the positioning unit by a gear box with backlash whereas a high positioning accuracy is required. The positioning unit has an encoder with high accuracy. It is useful in this case that this information is used for the position evaluation whereas speed and commutation position are still calculated from the encoder signals of the motor encoder.

A further class of applications can be summarized under the heading "synchronisation".

Here, several servo positioning controllers ARS 2000 are synchronized by coupling them by Master-Slave operation. The Master supplies the Slave with position information via the incremental encoder output (connector X11). The Slave reads in this signal by the external incremental encoder input (connector X10). The connectors have to be coupled by a 1:1 cable (pin 1 to pin1, pin 2 to pin 2, etc.). The figure below shows the configuration for two servo positioning controllers:

Figure 18: Master-Slave operation

The Master operates in one of the preceding described operating modes (speed control, positioning) while the Slave is in a synchronized operating mode.

This configuration allows for example the following applications:

- Speed synchronous operation
- Position synchronous operation
- Flying Saw

12.1 Synchronisation / Parameterisation of the Master

In Master-Slave operation the master emulates an incremental encoder. The incremental encoder is configured by the parameters of the menu **Operating mode/Incremental encoder emulation**:

Incremental encoder emulation	(X11)
Incremental encoder	
Line count	1024
Number of increments per rotation	4096
Disable tracks A and B	
🗖 Suppress index pulse	
Reverse direction	
Offset angle	0,0 °
<u>OK</u> <u>X</u> Canc	el ? <u>H</u>elp

12.2 Synchronisation / Parameterisation of the Slave

Signal to the slave for synchronized operation that angle encoder information is supplied via the incremental encoder input X10. Check the option **Synchronized** for speed an position synchronous applications resp. **Flying saw** (position synchronous operation only) in the commands window:

Commands
Controller enable
Operation mode © Torque control
Speed control
O Positioning
Course program
☐ Jogging
Synchronization © Off
Synchronized
○ Flying sa w
Synchronization wizard
Controller overview

Click onto the button **Synchronisation wizard** and follow the instructions for a detailed configuration of the synchronous application. You can also configure the settings manually. In this case, check the following parameters:

- Correct settings of the encoder configuration in menu Operating mode/Encoder selection
- Correct settings of the encoder parameters in menu Parameters/Device parameters/Angle encoder settings
- Correct settings of the setpoint management (e.g. in speed synchronous operation) in menu
 Operating mode/Setpoint selection
- Correct settings of the position sets (for Flying Saw: synchronized checked or not checked) in menu Parameters/Positioning/Destination parameters

12.3 Speed Synchronous Operation

Speed synchronous operation is a special application of the operating mode speed control. The speed setpoint is passed from the Master to the Slave via an encoder interface. Ensure that the speed signal of the Master is considered for the setpoint calculation of the Slave in menu **Operating mode/Setpoint selection**. The following example shows a possible configuration if the speed setpoint from the Master is passed to the Slave via X10:

Forque control Speed control Position s	etpoint			1	
Selector A (Adder) Analogue input 0 Analogue input 1 Fixed value 1 Fixed value 2 Fixed value 3 Process controller n ref PWM_X10 Selector B Analogue input 0 Selector C Analogue input 0 - inactiv	n selector A n selector B e n selector C e v			<mark>У []</mark> Х <u>С</u> а ? <u>Н</u>	IK ncel elp
	Speed setpoint	Positive torque limitation	Negative torque limitation		
	0.000	inactive	inactive		

In most cases the resolution of the incremental signal is comparably small. Transmission problems of the digital signals may occur at too high frequencies resp. the appearing frequency has to be lower than the maximum input frequency of the incremental encoder input. This leads to a high quantisation of the synchronous speed signal. Again this causes a high setpoint noise audible in the Slave drive. This influence may be reduced by an appropriate filter. Click onto the button "…" next to **Synchronous speed** in order to enter the filter time constant. Alternatively open the menu by **Parameters/Controller parameters/Speed controller** and select the tab **Filter**:

Time constant of synchronous speed	0,40 ms	0,42 ms
setpoint filter		

12.4 **Position Synchronous Operation**

In pure position synchronous operation the slave takes the position setpoint directly from the encoder interface selected for the synchronisation. Here, the speed controller always gets a speed setpoint feed forward value by the synchronous speed value.

Select this pure position synchronous operation by the option **Synchronized** in the field **Synchronisation** of the **commands window**. Select the operating mode **Positioning**.

12.5 Flying Saw (product level 3.4)

The expression "Flying Saw" describes applications in which the synchronisation is activated and deactivated depending on the positioning sets: synchronous position sets for on-synchronisation to the active movement of the master are combined with non-synchronous position sets for the movement to the resting position/waiting position. Here, a process for on- and off-synchronisation avoids jerky movements.

Check the option Flying Saw in the Commands window.

Check the option **Synchronized** for all synchronous position sets in menu **Parameters/Positioning/Destination parameters**.

The further parameterisation is application specific. Please contact the Technical Support for more information.

12.6 Cam disk / axis error compensation / cam switch

12.6.1 Cam disk principle

The term "(electronic) cam disk" describes applications in which an input angle or an input position is reproduced as an angle setpoint or as a position setpoint through a function. Typically, these applications are master-slave-applications. See also the following example:

A milling head is to follow a certain curve (dotted line). For this purpose, an additional small linear axis is mounted on one linear axis (drive 1). This smaller linear axis controls the Y-advance. The milling head is installed at the end of this axis.

The Y-drive must be controlled as a function of the actual position value of the X-drive. The master position (Servo1) is transferred to the slave through the X10-X11-link. The slave calculates the actual "cam disk" (conversion of the master position into the position setpoint).

The actual function, which converts the input value of the position ("position X") into the actual setpoint ("position Y"), is delivered through a table:

In the table, a certain output position is assigned to each of the position values. The input position values are called **interpolation points or nodes**. The servo positioning controller performs an interpolation (e.g. a linear one) between these interpolation points. This means that it does not follow the ideal curve, but the interpolated trace (red line).

Note: This example intentionally includes only very few interpolation points in order to explain the difference between an "ideal curve" and a "trace". In practice, one uses much more interpolation points in order to keep the difference between the ideal curve and the trace as small as possible.

If the input position is located outside the interpolation points (smaller than the minimum position or larger than the maximum position), the value of the minimum position or the value of the maximum position will be used.

12.6.2 Axis error compensation principle

The term "axis error compensation" describes a function that compensates for an incorrect actual value feedback which is due to the system. The encoder system, which is used to determine the actual value, may show deviations between the calculated actual position and the physical position. These deviations may be due to mechanical tolerances or assembly defects, for example. The deviations are stored in the form of a table. The correction position is added to a reference position which corresponds to the position setpoint in this case. As a result, a modified position setpoint is generated. Due to the position controller operation, this modified position setpoint leads to a modified "compensated" actual position value. A linear interpolation is performed between the nodes. The axis error compensation is based on the same internal mechanism as the cam disk. This is why the same boundary conditions as described in section 0 apply.

12.6.3 Cam switch principle

The term "cam switch" describes the assignment of a logic level to a position or angle information. The term stems from trip cams that are mounted on a shaft and actuate switching contacts in certain positions. An electronic cam switch uses a similar functionality. See the following diagram of a four-channel cam switch:

A level change is possible at the interpolation points. This is why the cam switch is implemented together with the cam disk.

ĺ

If the input position is located outside the interpolation points (smaller than the minimum position or larger than the maximum position), the logic level of the minimum position or of the maximum position will be used.

12.6.4 Implementation in the ARS 2000 range and in the parameterization program

The functionality implemented in the ARS 2000 product range has the following features (status of product level 3.3):

- The system can manage up to 16 tables with a total of up to 2048 nodes. The distribution of the tables and interpolation points on cam disks or axis error compensations is free.
- The interpolation points do not have to be equidistant. A linear interpolation is performed between the nodes.
- To every cam, a four-channel cam switch is coupled. Active trip cams require an active cam disk.
- The cam disk as well as the cam switch and the axis error compensation can be defined depending on the direction of rotation:

• The cam disk can be offset online by a certain amount:

• For the cam disk table a "gain" is in preparation. The data can be scaled by a factor. The factor lies between 0.01 and 100. The factor can also be entered online.

- Cyclic cam disks, i.e. a repeating movement, can be realized by activating the rotary axis functionality. The rotary axis range of the master position (reference position in the table) should correspond to the rotary axis range in the servo positioning controller.
- The reference position corresponds to the position setpoint. It can be acquired through the incremental input (X10) or via the trajectory generator, for example. If the synchronization is activated, the reference position is automatically taken over from X10. If the trajectory generator is used, the position setpoints are generated when a positioning run is started. They are internally calculated as reference positions by the processor. In this way, a virtual master axis can be provided.

The parameterization program offers the following features:

- Cam disks with cam switches and axis error compensations can be loaded from an Excel table.
- Display, activation and online manipulation of cam disks
- Mapping of the trip cams on digital outputs.
- Display and activation of the axis error compensation
- Cam disks with cam switches and axis error compensations can be loaded and saved using DCO files.
- Displaying an active CAM or axis error compensation in the commands window

See also chapter 12.6.7.

12.6.5 Structure of the table for cam disks, cam switches and axis error compensations

The interpolation points table is realized in Excel[®]. See the following illustration.

An Excel[®] file can comprise several worksheets. Every worksheet is an individual application. An application, on the other hand, can include several cam disks and / or axis error compensations.

Only complete applications can be loaded into the servo. This means that if you need several cam disks and / or axis error compensations, they must be defined on one table sheet! Cam disks and axis error compensations cannot be loaded separately!

In order to load cam disks and / or axis error compensations from a table, you need a valid $\text{Excel}^{(6)}$ installation on your PC!

The procedure for loading the cam disk tables is described in chapter 0.

Examples for cam disks and / or axis error compensations can be found in the working directory of the parameterization program in the sub-folder "CAM".

The following is a description of the structure of the **table header**:

CAM-Data			
Excel Format Version	1		
Application name:	Test Application		
Comment:	Test		
Number Tables:	2		
Document generated:	11.11.2006	Author:	M. Mustermann
Last change:	12.12.2006	Changed by:	M. Mustermann
Cell [A,1] must contain the keyword CAM-Data.

The name of the application should be entered into cell [B,3]. If the Excel[®] file comprises several sheets, these names are offered for selection.

Cell [B,5] must contain the correct number of tables (cam disks + axis error compensations!) of the application.

The following is a description of the **table headers**.

11	Table name	Cyclic table				
12	Comment					
13	Table length	17				
14	Table type	0	(Cam disk)			
15	Master Offset (Refln)	0.1	(in RefIn position units)			
16	Polarity Hysterisis	30	(in RefIn position units)			
17	Switch Comparator	10 (in RefIn position units)				
18	Gain	1.234 (no dimension)				
19	<u>Table data</u>					
20	Columns	Master (RefIN)	Slave (RefOUT) pos.	Slave (RefOUT)	Cam (pos)	Cam (neg)
21	Factor Group numerator	1	4096	4096		
22	Factor Group divisor	16384	225	225		
23	Resolution numerator	1	1	1		
24	Resolution divisor	1073741824	10	10		
25	Position units	U	•	•		
26	1	-2,000	0,00000	0,00000	0000	1001
27	2	-1,750	10,00000	10,00000	1001	1001

If several tables are defined in an application, the tables are arranged horizontally next to each other. A cam disk covers 5 columns whereas an axis error compensation covers 3 columns. The table header information is located in lines 11 to 25.

A table name must be entered into the cell [column 1, line 11]. This name will also be shown later in the representation of the parameterization program.

Cell [column 1, line 12] may contain an optional comment.

The table length has to be entered into cell [column 1, line 13]. It is identical with the number of nodes.

Cell [column 1, line 14] contains the table type:

- 0 = cam disk
- 1 = axis error compensation

Cell [column 1, line 15] contains the offset of the reference position. See chapter 12.6.4.

Cell [column 1, line 16] contains the hysteresis for the change of direction (polarity hysteresis). It controls the switching process to column 2 or column 3 of the table data for the slave position. See chapter 12.6.6.

Cell [column 1, line 17 and 18] (switch comparator and gain) contain special cam disk parameters reserved for later extensions. This function is not supported at present. For reasons of compatibility, they are already included in the Excel table. At present, they are already transferred to and saved in the servo positioning controller. See chapter 12.6.4 for more information concerning the gain of the output position.

In column 1 / column 2, lines 21.24, the factor group and the resolution must be set correctly so that the cam disk uses the correct physical units. See also chapter 12.6.6.

It is possible to use different physical units for the ingoing shaft and / or the outgoing shaft. In this case, the values in column 1 and column 2 differ from each other!

It is **not** possible to define units in column 3 that differ from column 2!

Suggestion: Use names for the columns, e.g. "Master (ref/N)"

Column 1 / column 2 and line 25 must contain the corresponding position unit. It does not affect the behavior of the cam disk, but is used for display purposes on the parameterization interface. The following units can be used:

- U or R: revolutions
- m, mm, µm : meter, millimeter, micrometer
- °: degree
- rad : radian

The following is a description of the **table body**:

20	Columns	Master (RefIN)	Slave (RefOUT) pos.	Slave (RefOUT)	Cam (pos)	Cam (neg)
21	Factor Group numerator	1	4096	4096		
22	Factor Group divisor	16384	225	225		
23	Resolution numerator	1	1	1		
24	Resolution divisor	1073741824	10	10		
25	Position units	U	٥	٥		
26	1	-2,000	0,00000	0,00000	0000	1001
27	2	-1,750	10,00000	10,00000	1001	1001
28	3	-1,500	20,00000	20,00000	1001	1001
29	4	-1,250	40,00000	30,00000	0001	0011
30	5	-1,000	70,00000	40,00000	1001	1001
31	6	-0,750	100,00000	50,00000	0000	1001
32	7	-0,500	120,00000	60,00000	1001	1001
33	8	-0,250	140,00000	70,00000	1001	1001
34	9	0,000	160,00000	80,00000	1001	1111

The table body starts in line 26. One line must be filled out for every node. (See also the explanation for line 13!) The individual columns have the following meaning:

Column 1	Master position. The values in line 2125 are used for the unit and the scaling.
Column 2	Represented position if the drive moves in the positive direction. The values in line 2125 are used for the unit and the scaling.
Column 3	Represented position if the drive moves in the negative direction. The values in column 2 and in line 2125 are used for the unit and the scaling.
Column 4	This column contains the status information of the individual cam switches if the drive moves in the positive direction. The number format is binary (only 0 and 1 are allowed). The right-hand bit represents channel 1 of the cam switch whereas the left-hand bit represents channel 4. If the curve is of the "axis error compensation" type, this column is omitted!
Column 5	This column contains the status information of the individual cam switches if the drive moves in the negative direction. As for the rest, please refer to the information given for column 4.

12.6.6 Physical units / control parameters for cam disks and axis error compensation

Numbers stated in the cam disk table usually are floating-point numbers. In addition, the user prefers to state the physical unit of the application, e.g. mm. For the transfer via RS232 / UDP, the data must be converted into a fixed-point format. The servo positioning controller then converts these data through a factor group and then uses them for the runtime calculation. The factor group is structured in the same way as it is already implemented in the servo positioning controller in accordance with CANopen DSP 402.

Therefore the user has to be parameterize two conversions in the table:

- From the table cells into "transfer units" with the form "* (divisor / numerator) ".
- From the "transfer units" into the internal data in accordance with the factor group for positions.

The use of the factor group for positions corresponds to the CANopen procedure. The CANopen manual includes examples and further information concerning the calculation of the factor group for "arbitrary" units. According to the procedure described in the manual, the user calculates a value for the factor group numerator and a value for the factor group divisor. These values have to be entered into the corresponding cell. If the factor group of the master differs from the factor group of the slave, the user has to be repeat the procedure for the slave.

It is possible to have a wizard calculate the Factor Group. Proceed as follows:

C Rotatory					
C Linear moto	r			Image:	
Position unit		Decimals		Columns	Master (ReflN)
O Increments	[Inc]	Decimals:	0	FactorGroup: Numerator	1
G	-			FactorGroup: Divisor	1
() Revolutions		Gear		Resolution: Numerator	1
🔿 Degree	[°]	Numerator	1	Resolution: Divisor	1
€ Metre	[m]	Divisor	1	Physical unit	m
C Millimetre	[mm]	Feed		Effective physical unit	1 m
C Micrometre	[11m]	m per R	1		
	[hun]				Copy FactorGroup in th clipboard
		315			
Deutsch	E	nglish			

• Select the "Assistent" worksheet of the Excel table. The following input fields are displayed:

- Enter the boundary conditions of the drive. The resulting factor group is automatically determined.
- Click on the button Copy Factor to clipboard.
- Return to the worksheet and place the cursor in the upper line into which the factor group is to be copied.
- Press <Ctrl> + V. The calculated factor group will be copied.

The hysteresis (polarity hysteresis) controls the change in the table data to the slave pos column (RefOUT) or to the slave neg column (RefOUT).

In case of having problems with the computation in the "Assistent" worksheet please enter the Excel menu Extras/Add-Ins-Manager and enable the analysis functions.

12.6.7 Menu for controlling the cam disks

The graphical user interface for handling cam tables can be found in the menu **Parameter/CAM/Cam disk**. The following menu will appear:

Cam disk Cam disk available in this servo Cam disk 1 (active) Nodes = 17 Offset reference position = 0,10 R Gain = 1,00000 Cam disk 2 Name = Control Y-Axis Nodes = 20 Offset reference position = 0,30 mm Gain = 1,23399 Free Nodes = 2011 Free Nodes = 2011	Activation Parameters Transfer Cam disk
<u>✓ 0</u> К	slete

12.6.7.1 "Activation" tab

The tree view shows the number of cam disks that are currently loaded. The following additional information is displayed for every cam disk:

- Name of the cam disk
- Number of nodes used
- Offset of the reference position
- Gain

Active cams are marked by the addition active!

In addition, the remaining number of free nodes is displayed.

12.6.7.2 Cam disk active

This check box can be used to activate or deactivate a cam disk. If the check box is selected, the activation applies to the cam disk number (see below!).

Caution!

If the cam disk is activated at a reference position at which the output position strongly deviates from the current actual position, the drive will immediately jerk and jolt if the controller is already enabled or when the controller enable is activated!

12.6.7.3 Cam disk no.

This input field can be used to state the desired cam disk number. If the cam disk function is active, the system switches immediately from the old cam disk to the new one.

Caution!

If the system switches from one active cam disk to another one while the controller enable is active, the drive may jerk and jolt.

12.6.7.4 <u>"Parameters" tab</u>

am disk Cam disks available in this servo Cam disk 1 (active) Name = Cyclic table Nodes = 17 Offset reference position = 0,10 R Gain = 1,00000 Cam disk 2 Name = Control Y-Axis Nodes = 20 Offset reference position = 0,30 mm Gain = 1,23399 Free Nodes = 2011	Activation Parameter Data (Cam disk 1) Offset Gain:	S Transfer)
	Delete	

12.6.7.5 Offset reference position

This input area shows the offset of the reference position for the selected cam disk. (See also chapter 1.1.4.) The cam disk can be selected by clicking on it in the tree diagram. The offset can be changed. Any changes made are immediately effective.

12.6.7.6 Gain

This input area shows the gain of the output position for the selected cam disk. (See also chapter 1.1.4.) The cam disk can be selected by clicking on it in the tree diagram. The gain can be changed. Any changes made are immediately effective.

am disk Cam disks available in this servo Cam disks available in this servo Cam disk 1 (active) Name = Cyclic table Nodes = 17 Offset reference position = 0,10 R Gain = 1,00000 Cam disk 2 Name = Control Y-Axis Nodes = 20 Offset reference position = 0,30 mm Gain = 1,23399 Free Nodes = 2011	Activation Parameters Transfer
<u>✓ 0</u> K	Delete

12.6.7.8 <u>Excel >> Servo</u>

This button can be used to load an application (consisting of cam disks and / or axis error compensations) into the servo positioning controller. See also chapter 12.6.5.

Click on the button and select an Excel file. If the Excel file includes several worksheets (applications), please select the desired application.

This feature requires a valid Excel[®] installation on your PC!

12.6.8 Menu for controlling the axis error compensation

The graphical user interface for handling the axis error compensation can be found in the menu **Parameter/CAM/Axis error compensation**. The following menu will appear:

Axis error compensations available in this servo Axis error compensation 1 Axis error compensation 1 Nodes = 64 Axis error compensation 2 (active) Name = Compensation 2 Nodes = 64 Free Nodes = 1904	Activation Transfer Axis error compensation Axis error compensation active Axis error compensation no.: 2
<u>и ок</u>	elete

12.6.8.1 <u>"Activation" tab</u>

The tree view shows the number of axis error compensations that are currently loaded. The following additional information is displayed for every axis error compensation:

- Name of the axis error compensation
- Number of nodes used

In addition, the remaining number of free nodes is displayed.

12.6.8.2 Axis error compensation active

This check box can be used to activate or deactivate an axis error compensation. If the check box is selected, the activation applies to the number of the axis error compensation (see below!).

12.6.8.3 Axis error compensation no.

This input field can be used to state the desired number of the axis error compensation. If the axis error compensation is active, the system switches immediately from the old axis error compensation to the new one.

12.6.8.4 <u>"Transfer" tab</u>

Axis error compensation Axis error compensations available in this servo Axis error compensation 1 Name = Compensation 1 Name = Compensation 2 (active) Name = Compensation 2 Nodes = 64 Free Nodes = 1904	Activation Transfer
	Delete

12.6.8.5 <u>Excel >> Servo</u>

This button can be used to load an application (consisting of cam disks and / or axis error compensations) into the servo positioning controller. See also chapter 12.6.5.

Click on the button and select an Excel file. If the Excel file includes several worksheets (applications), please select the desired application.

This feature requires a valid Excel[®] installation on your PC!

13 Further Functions of Metronix ServoCommander[™]

13.1 Using the service module

The service module can be used to save data of the servo positioning controller and to transfer them to other servo positioning controllers. If certain boundary conditions are fulfilled, this data transfer can also be performed without a PC.

The following types of data are supported by the product level 3.3:

- User parameter sets (these include the entire parameterization of the servo positioning controller, i.e. controller parameters, safety parameters, setpoint management, but <u>no</u> position data sets)
- Position data sets
- Error buffer (as of product level 3.4) Each error message generates an entry in the internal error buffer. These entries are cyclically copied into the service module if an entry of it is configured as error buffer. The service module can store more than 7000 error messages. Please refer also to Chapter Error Buffer.

In the service module, the data are organized in so-called **entries**. Every entry can be assigned to a firmware (at planning level), a user parameter set or to position data sets. In addition, certain conditions can be defined that regulate the transfer from the service module into the servo positioning controller and vice versa.

The service module can be accessed via the menu <u>File/Parameter Set/Service-Modul</u>. The following menu will appear:

Techno Module 1: Not available Techno Module 2 Entry 1: User position set OP-Code: 0P-Code 5: Condition: No condition Parameter 8: 0x00000000 Entry 2: (empty)	Edit Transfer Delete Behaviour after reset Dp-Code 1: Load, if condition == TRUE ? Condition: (Contents CO (Part) AND Par2) == Par3 ? Parameter 1 209 (hex) ? Parameter 2 Ff (hex) ? Parameter 3 6 (hex) ?
	Should the changes for this entry be saved in the table of <u>Apply</u>

The tree diagram on the left shows the technology slots in which a service module has been detected. You can double-click on the individual entries to check the associated details.

The characteristics of the individual entries can be defined on the **Edit** tab.

The content type can be defined in the **Typ** field. See the following table:

The field **Operation Code** defines what will happen with the entries. See the table below:

Operation Code				
Value	Description			
0	passive, no action			
1	The data are loaded from the service module into the servo positioning controller.			
	The action will be performed if the condition is fulfilled (see below).			
2	The data are loaded from the service module into the servo positioning controller and then they are saved (SAVE).			
	The action will be performed if the condition is fulfilled (see below).			
3	The data of the servo positioning controller are stored in the entry X of the service module. The number X of the entry is defined by parameter 7. The operation code, the condition and the parameters for this entry are taken from an internal data buffer. These data must have been entered beforehand.			
	This action will be performed without consideration of a condition. It is used, for example, so that the user can load data once from a servo positioning controller into a service module. This will then be used in the field.			
4	After a reset, the data of the servo positioning controller are stored in the entry X of the service module. The number X of the entry is defined by parameter 7. The parameters 16 are <u>not</u> changed by the transfer.			
	This action will be performed without consideration of a condition. It is used, for example, so that the user can load data from a servo positioning controller into a service module in the field without a PC. The data originally stored in this entry will be overwritten.			
5	After a reset, the data of the servo positioning controller are stored in the entry X of the service module. The number X of the entry is defined by parameter 7. The parameters 16 are <u>not</u> changed by the transfer. Parameter 8 will be entered and saved for the entry X as the new operation code (bit 815) and as the new condition (bit 1623).			
	This action will be performed without consideration of a condition. It is used so			

that the user can do the following things in the field without a PC:
 Loading data from a servo positioning controller once into a service module.
Transferring the data to other servo positioning controllers.
The data originally stored in this entry will be overwritten.
Note:
Since the original operation code will be overwritten by the value of parameter 8, special attention must be paid when entering parameter 8.

The execution of an action can be specifically adapted to the boundary conditions of an application with the help of the condition field. See the following table. See chapter 13.1.1 for examples:

Only the actions of operation codes the execution of which is subject to a condition can be suppressed. See also the **Operation Codes** table.

Conditio	n
Value	Description
0	This action is always performed!
1	A communication object (CO) is read (CO number in parameter 1). Then a logic AND operation is performed with a mask (mask in parameter 2). The result of the operation is compared to a desired result (result in parameter 3).
	If the two results correspond with each other, the operation will be executed.
2	Test A
	A CO is read (CO number in parameter 1). Then a logic AND operation is performed with a mask (mask in parameter 2). The result of the operation is compared to a desired result (result in parameter 3).
	Test B
	A CO is read (CO number in parameter 4). Then a logic AND operation is performed with a mask (mask in parameter 5). The result of the operation is compared to a desired result (result in parameter 6).
	If the results from test A <u>or</u> the results from test B correspond with each other, the operation will be executed.
3	"Test A" and "Test B" are performed as described under 2.
	If the results from test A <u>and</u> the results from test B correspond with each other, the operation will be executed.
4	Note: This condition is reserved for the content type "firmware" and will be ignored for other content types.
	Reserved.

The following menu appears under the **Transfer** tab:

This menu is used to transfer data from the service module to the servo positioning controller and vice versa <u>via the interface</u>. In general, this is necessary in order to be able to automatically load a parameter set from the service module into the servo positioning controller. The transfer processes will then be automatically controlled by the firmware depending on the operation codes and on the conditions (see also the beginning of this chapter).

Transfer

Here you can select whether you want to transfer data from the service module into the servo positioning controller or vice versa.

Please perform the following steps if you want to transfer data from the service module to the servo positioning controller:

- In the tree diagram, select the entry to be transferred.
- Select the box Service-Modul >> Servo in the Transfer area.
- Click on the button **Execute**.

Please perform the following steps if you want to transfer data from the servo positioning controller to the service module:

- Select the box Servo >> Service-Modul in the Transfer area.
- Select the type of data to be stored in the entry in the **Typ** field.
- Select an operation code, a condition type and the necessary parameters.
- Click on the button **Execute**.

The following menu appears under the Copy tab:

Service module					
- Techno Module 1	Edit	Transfer	Delete	Сору	
Entry 1: Error buffer					
Entry 2: User parameter set			~		
OP-Code: OP-Code 0: No action			Copy	data: s	service module 1 pp service module 2
Condition: 0: No condition					
Entry 3: User position set					
OP-Code: OP-Code 0: No action					
Condition: 0: No condition					
1					
					и ок
					<u> </u>

The function can be started only if technology slots 1 and 2 are plugged with a service module. It is only possible to copy the data from service module 1 to service module 2. A copy can be processed only if the power stage of the servo positioning controller is not activated.

Copy data: service module 1 >> service module 2

Start the copying process with this button. The user is informed, if the process has been finished with or without success.

13.1.1 Applications with the service module / case examples

Case example A:

Situation

In the service module, a parameter set for an ARS 2102 servo positioning controller is stored under entry 1. You want the system to load this parameter set if the module is plugged into a corresponding servo positioning controller and if a power-on reset is performed.

At the same time, a parameter set for an ARS 2310 servo positioning controller is stored under entry 2. This, too, should be loaded only if the module is plugged into a servo positioning controller of this type.

If a parameter set could be loaded (valid device type), the parameter set is to be saved permanently in the servo positioning controller (SAVE).

Parameterization

The content type of entry 1 is "2" (user parameter set).

The operation code for entry 1 is "2" (loading data from the service module into the servo positioning controller and saving them with SAVE).

The condition for loading the parameter set 1 is that the present servo positioning controller is a controller of the ARS 2102 type. The value of a communication object (CO) has to be compared with a predefined value \rightarrow condition type = 1.

The device type is stored in the CO "srvc_device_type". This CO has the number 0x2D9. \rightarrow Parameter 1 = 0x2D9.

This CO assignment is as follows:

Device	Contents of CO "srvc_device_type"
ARS 2102	0x2005
ARS 2105	0x2006
ARS 2302	0x2009
ARS 2305	0x200A
ARS 2310	0x200B
ARS 2320	0x200C
ARS 2340	0x200D

All relevant bits can be selected from the CO (mask = 0xFFFFFFF) \rightarrow Parameter 2 = 0xFFFFFFFF

The target value for parameter set 1 is 0x2005 (ARS 2102) \rightarrow Parameter 3 = 0x2005.

The parameterization for entry 2 in the service module is the same. The only difference is parameter 3: The "target type" is an ARS 2310 (srvc_device_type = 0x200B)

The following	parameterization must be selected	ed:

	Entry 1	Entry 2
Content type	2	2
Operation code	2	2
Condition type	1	1
Parameter 1	0x2D9	0x2D9
Parameter 2	0xFFFFFFF	0xFFFFFFFF
Parameter 3	0x2005	0x200B

Case example B:

Situation

. ..

In the service module, parameter sets for an ARS 2102 servo positioning controller are stored under the entries 1..3. The target is three identical devices. Their only difference is the coding connectors connected to the digital inputs:

	DIN 29	DIN 1	DIN 0
Device 1	х	0	0
Device 2	х	0	1
Device 3	х	1	0

The parameter set should be loaded at a power-on-reset, if the module is plugged into the servo positioning controller and if the corresponding combination is applied to the digital inputs of the servo positioning controller. After loading, the parameter set should be saved permanently (SAVE).

Parameterization

The content type of all entries 1..3 is "2" (user parameter set).

The operation code for all entries 1..3 is "2". The parameter set is to be loaded from the service module into the servo positioning controller and saved with SAVE.

The condition for loading the parameter set is that the content of the CO has a certain specific value for the digital inputs \rightarrow condition type 1.

The status of the digital inputs is stored in the CO "ioh_din". This CO has the number 0x44C. \rightarrow Parameter 1 = 0x44C.

In this CO, DIN0 is stored in bit 1. Since only these two bits can be evaluated, no other bits than bit 1 and bit 2 can be set in the mask. \rightarrow Parameter 2 = 0x6

The target values for the operation can be derived from the device coding for the individual devices. This results in the following parameterization:

	Entry 1	Entry 2	Entry 3
Content type	2	2	2
Operation code	2	2	2
Condition type	1	1	1
Parameter 1	0x44C	0x44C	0x44C
Parameter 2	0x06	0x06	0x06
Parameter 3	0x00	0x02	0x04

Case example C:

Situation

You want to use the service module to transfer parameter sets from a servo positioning controller into several other controllers of the same type. However, no PC is available at the location. This means the module has to be "activated" beforehand so that it reads the parameter set in the first servo positioning controller and then writes it to all the other servo positioning controllers.

Parameterization

The content type of entry 1 is "2" (parameter set).

The operation code of entry 1 is "5": The parameter set is to be saved to entry 1 after a reset. Then the operation code and the conditions must be updated.

The condition will not be evaluated for this content type: Use the default value "0".

Entry 1 is to be used: \rightarrow Parameter 7 = 1.

After the transfer, a new operation code and a new condition are required:

After the reset, the data must be written into the servo positioning where they have to be saved permanently: operation code = 2 in bit 8..15.

This action is to be performed always: condition type = 0 in bit 16..23.

 \rightarrow For parameter 8, this results in the value: 0x00000200

The following parameterization must be selected:

	Entry 1
Content type	2
Operation code	5
Condition type	0
Parameter 7	0x00000001
Parameter 8	0x00000200

13.2 Activating the Default Parameter Set

The servo positioning controller comes supplied with an active default parameter set. This default parameter set brings the servo positioning controller into a basic state. The servo positioning controller has the status "not commissioned" and the seven-segment-display shows the letter "A".

During commissioning, the parameter set has to be adapted to the specific application. Otherwise the servo positioning controller has the status "not commissioned".

The manufacturer settings in the default parameter set can be restored with the help of the menu **<u>File/Parameter set/Load default Parameter set</u>**.

When the default parameter set is loaded, the application-specific parameters will be overwritten and the controller status will be set to "not commissioned". This should be taken into consideration when using this function as it requires a new commissioning.

13.3 Transfer Window

The parameterisation program Metronix ServoCommander[™] communicates with the servo positioning controller ARS 2000 by a certain protocol. Here, the individual commands are defined. The Transfer window allows sending commands directly to the servo positioning controller ARS 2000 and to monitor the response.

The transfer window is activated via **<u>File/T</u>ransfer**.

While the Transfer window is active, other open windows are rendered inactive (e.g. actual values, oscilloscope). Close the Transfer window, if you no longer need it.

The Transfer window is usually only used to send commands, which are of no interest for normal operation. It can also be used to read and write storage location or communication objects. This also is only necessary in special cases.

It is also possible to monitor the switch-on message of the firmware. To do so, proceed as follows:

- Open the Transfer window.
- In the input line enter RESET! and press <Enter> or click on Send.
- The message window will display the complete switch-on message of the firmware.
- Close the Transfer window.

13.4 Exiting the Program

The program Metronix ServoCommander[™] can be exited as follows:

- By selecting the menu option <u>File/Exit</u>
- By pressing the shortcut <Alt>+F4
- By clicking on the X-button on the upper right hand side of the main window.

13.5 Analogue Monitor

The servo positioning controller ARS 2000 has two analog outputs for displaying control values, which can be displayed on an external oscilloscope. The output voltages are within a range of -10V to +10 V.

To configure the analog monitor, select the menu option **<u>Parameters/IOs/A</u>nalogue outputs** and then the corresponding channel.

Channel 0 Channel 1	
Analogue monitor	+10 Volt correspond to
 Position - actual value Real current - setpoint Real current - actual value 	
Reactive current - setpoint Reactive current - actual value Phase current	
Rotor position DC-bus voltage Fixed voltage value	
C Freely selectable communication object	Numeric overflow limitation

Select the value you wish to display on the analogue monitor. Set the scaling in the field Scaling.

The option **Freely selectable communication object** is reserved for special applications.

If the check box **Numeric overflow limitation** is checked, computed values above +10 and below -10 V will be limited to this range. If the box is not checked, values exceeding the +10V value will be shown as negative voltages and vice versa.

13.6 Motor Data Configuration

This menu (**Parameters/Device parameters/Motor data**) is used to configure the fundamental motor data. The following menu will appear:

Se	lect new motor		 Image: A set of the set of the	<u>0</u> K
Limit value			x	Cancel
Maximum current in A, rms value:	1,00 A	1,00 A	?	<u>H</u> elp
Nominal current in A, rms value:	0,50 A	0,50 A		
power stage!		inclucity of the		
power stage!	Powe	r stage		
power stage! Number of poles 6 \$ Auto detec	Powe = 3 pairs t	r stage		

Enter the data shown on the type plate. You can calculate the **Torque constant** as the quotient of nominal torque / nominal current.

Please note that the values to be entered for the maximum current and the nominal current are effective values! If the currents are too high, the motor may be destroyed due to thermal overload or a demagnetisation of the permanent magnets inside the motor. The current limits stated by the manufacturer must not be exceeded.

The maximum current limits may depend on the clock frequency of the output stage. If you want to parameterize the power stage frequency, click on the button **Power stage** (see also *Chapter 13.7, Page 163*).

In addition you can enter the number of poles of your motor. There is also an automatic identification function which determines the number of poles and the offset angle of the angle encoder automatically. Simply click on the **Auto detect** button.

DANGER !

Prior to starting the motor identification, you have to set the current limits (menu **Parameters/Device parameters/Motor data**) as otherwise the motor may be destroyed!

13.7 Configuration of the Power Stage

This menu (<u>Parameters/Device parameters/Power stage</u>) configures some settings concerning the PWM of the power stage.

Power stage		
Enhanced sine-commutation	>	<u>0</u> K
	×	<u>C</u> ancel
Half power stage frequency	?	<u>H</u> elp

Enabling the option **Enhanced sine-commutation** allows better use of the DC-link voltage and thus ca. 14 % higher maximum speeds. In certain applications, the control behaviour and the running characteristics of the motor may be impaired at very low speeds.

Option **Half power stage frequency**: The ARS 2000 servo positioning controller allows the clock frequency to be halved.

Lower clock frequencies allow higher limits for the maximum current, but a singing sound may be audible while the motor is running. If you want the motor to run as quietly as possible, choose the full clock frequency. In addition, the losses in the motor are slightly reduce at full clock frequency (on the other hand the losses in the ARS 2000 servo positioning controller increase which is why the adjustable maximum current limits are slightly lower). The selection of the clock frequency has basically no influence on the control behavior.

П

Settings can only be changed, if the power stage is switched off.

13.8 Angle Encoder Settings

This menu is called by Parameters/Device parameters / Angle encoder settings.

This menu is used to configure the parameters for the angle encoders X2A, X2B and X10. Take the description of the basic functions from *Chapter 5.2.16*.

Tab Commutating-encoder:

Offset of encoder:

The angle encoder offset is the angular difference between the electrical and mechanical position. The value must be entered correctly to make sure that the motor harmonizes correctly with the servo positioning controller. A manual determination of the angle encoder offset is difficult. We recommend performing an automatic determination.

> Auto detect

This button is used to start the automatic identification process. Make sure that the current limits (see above) have been set correctly and that no errors are pending in the servo positioning controller. In addition, the shaft must move freely. The automatic identification process determines the following parameters:

• Number of pairs of poles

- Direction of rotation of the angle encoder
- Angle encoder offset

> Phase sequence

The phase sequence indicates the counting system ("direction of rotation") of the angle encoder and depends on the wiring among other things. The correct setting of the phase sequence is essential for operation. A manual determination of the phase sequence is difficult. We recommend performing an automatic determination (see above).

Tab X2A:

gle encoder settings		
Commutating-encoder X2A X2B X10		
X2A (Resol	ver)	<u>✓ </u> <u>о</u> к
	1	X <u>C</u> ancel
		? <u>H</u> elp
Gear factor	Mode	
Ingoing shaft: 1	Resolver	
Outgoing shaft:	C Analogue ball sensors	
l'		

> active

If the check box is selected, it means that the firmware analyses the encoder information on this connection. The check box has to be selected if the angle encoder is used for commutation and/or for determining positions or speeds.

> Gear factor Ingoing shaft/Outgoing shaft

The default setting is "Ingoing shaft" = "Outgoing shaft" = 1. Enter other values if you are using an angle encoder with a number of pairs of poles > 1.

Attention: These settings apply only to the **gear factor of the angle encoder**! If you want to parameterize an application with a gear (parameters in units of the outgoing shaft), enter this gear factor into the menu Display units!

<u>Tab X2B:</u>

> active

If the check box is selected, it means that the firmware analyses the encoder information on this connection. The check box has to be selected if the angle encoder is used for commutation and/or for determining positions or speeds.

Gear factor

The default setting is "Ingoing shaft" = "Outgoing shaft" = 1. Enter other values if you are using an angle encoder with a number of pairs of poles > 1. This is the case, for example, if there is more than one index pulse per rotation of the angle encoder.

Attention: These settings apply only to the **gear factor of the angle encoder**! If you want to parameterize an application with a gear (parameters in units of the outgoing shaft), enter this gear factor into the menu **Display units**.

Line count

Incremental encoders supply their angular information with the help of track signals. They supply periodic square (digital) signals or sine (analogue) signals. The line count stands for the number of full periods of a track per revolution. In general, the line count is stated on a data sheet or the nameplate of the angle encoder.

The line count itself does not take a possible high resolution into consideration. The resolution of digital incremental encoders is four times higher than the line count itself due to the fact that the incremental signals are evaluated four times. The resolution of analogue incremental encoders can be even higher.

Some firmware versions allow an automatic determination of the angle encoder line count. However, this is only possible if the angle encoder has an index pulse. In this case, enter the value 0 into the line count field and then start the automatic identification of the angle encoder parameters. Note: After the parameter identification process has been completed, it might be necessary to close the window and to reopen it in order to update the line count parameter.

Power supply

Please state whether the angle encoder is supplied with 5V or 12V. You can find this information on the data sheet.

Attention: If the power supply is too high, the angle encoder can be destroyed! Make sure that you have set the correct supply voltage!

Mode

> digital

This option must be selected if the angle encoder supplies track signals in a voltage range of 0...5 V. This information can be found on the data sheet. Often the information "digital" is directly stated on the data sheet.

> analogue

This option must be selected if the angle encoder supplies analogue track signals in a voltage range of $0...1 V_{pp}$. This information can be found on the data sheet. Often the information "analogue" is directly stated on the data sheet.

Analogue + serial interface

This option must be selected if the angle encoder supplies track signals in a voltage range of 0...1 V_{pp} and is equipped with a serial interface, e.g. to determine the initial position after a reset. Examples of serial interfaces are HIPERFACE (Stegmann) or EnDat (Heidenhain). Angle encoders with a serial interface are often also so-called multiturn absolute value encoders. They can distinguish a certain number of revolutions. In addition, angle encoders with a serial interface have an EEPROM in which certain parameters can be stored. Information concerning a serial interface can be found on the data sheet of the angle encoder.

For Heidenhain encoders with EnDat 2.1 communication protocol we strongly recommend to activate the evaluation of the Z0-track. Under special conditions it is possible to deactivate this evaluation e.g. if the encoder does not support analogue signals.

Analogue mode

Encoder with Z0-track

The Z0 track is the actual analogue track signal. Some encoder manufacturers use the terms sine_0 and cosine_0 track or A and B track instead of the term Z0 track. The line count refers to the Z0 track. Information concerning the Z0 track can be found on the data sheet of the angle encoder.

> Encoder with reference pulse

The reference pulse of an analogue incremental encoder corresponds to the index pulse of a digital incremental encoder. The information as to whether the angle encoder has such a pulse can be found on the data sheet of the angle encoder.

> Encoder with Z1-track

The Z1 track is the commutation track of an analogue incremental encoder. It consists of two signal pairs allowing a clear angle determination referred to 1 revolution. This method is applied to determine the commutation position after a reset. Analogue incremental encoders without a serial interface usually have a Z1 track. Note: Digital incremental encoders have tracks with Hall signals to determine the commutation position.

Some encoder manufacturers use the terms sine_1 and cosine_1 track or C and D track instead of the term Z1 track. Information concerning the Z1 track can be found on the data sheet of the angle encoder.

Digital mode

Encoder with AB-track

The AB track is the incremental track signal. The line count refers to this track. Information concerning the AB track can be found on the data sheet of the angle encoder.

> Encoder with index-track

The index pulse of a digital incremental encoder usually occurs twice per revolution. The index track ensures consistent precision in the case of incremental encoder systems. If counting errors occur due to external interferences, they are corrected by the occurrence of the index pulse. The information as to whether the angle encoder has such a pulse can be found on the data sheet of the angle encoder. If an index track is present and connected, the function of the index pulse can be suppressed by deactivating this check box.

Encoder with Hall signals

Hall signals can be used for an initial determination of the commutation position if a digital incremental encoder is used. Following a reset, the commutation position can be determined with an accuracy of 30° using Hall signals. This is sufficient for start-up. The commutation position will then be corrected at the segment limits and when the index pulse occurs for the first time, so that it corresponds to the specified angle encoder offset.

Interface Yaskawa 1

Yaskawa[®] servomotors are equipped with a special angle encoder interface, the Yaskawa[®] 1 interface. Select this check box if you want to operate motors with this angle encoder system. In addition, the check boxes "Encoder with AB-track", "Encoder with index-track" and "Encoder with Hall signals" have to be selected.

Settings Hall encoder

This field is not displayed unless the check box "Encoder with Hall signals" is selected.

> Offset

The offset describes the angular difference between the permanent magnets of the rotor and the zero position of the Hall signals. This value is determined in the course of the automatic angle encoder identification and should not be entered or optimized manually.

> Phase sequence

The phase sequence indicates the counting system ("direction of rotation") of the Hall signals and depends on the wiring among other things. The correct setting of the phase sequence is essential for operation. A manual determination of the phase sequence is difficult. We recommend performing an automatic determination (see above).

Size of Segment

The segment size indicates the angular range covered by one segment of a Hall signal, e.g. U. For information concerning the segment size please refer to the data sheet of the angle encoder or contact the encoder manufacturer. Standard Hall systems have a segment size of 120°. A segment size of 60° is reserved for special variants.

> After Hall signal switch

Here you can select various options to specify how the commutation shall be continued after the first Hall segment change.

The **Block commutation** option means that the commutation position is determined solely on the basis of the Hall signals. As a result, the commutation position is quantized very roughly and the motor develops high losses. This option is reserved for special applications.

The **Sine-commutation** option means that the commutation position will be corrected after the first Hall segment change. Then it will be determined on the basis of the incremental position information. This option leads to an optimum resolution and an optimum behaviour concerning the commutation position. We recommend using this option.

The option **Sine-commutation supported with Hall** means that the commutation position is corrected at every Hall segment change. Up to the next change, the commutation position is calculated incrementally. This option is useful in the case of highly disturbed signals in order to be able to continuously update the commutation position.

Error signal

The option **Error signal** means that contamination or other faults of the measuring system can be determined over the AS or NAS signal. The evaluation of the error signal is possible with digital and analogue incremental encoders. The evaluation at analogue incremental encoders is only possible if no commutating track is parametrised. When the evaluation of the error signal is active and an encoder error is determined, the following error occurs:

Error 08-2 at analogue incremental encoders

Error 08-4 at digital incremental encoders

The evaluation of the error signal can be inverted (Low active, NAS signal) or not inverted (High active, AS signal).

If the connected encoder at X2B has an EEPROM a field with a button "Save" appears. Use this button to store encoder and motor parameters to the EEPROM of the angle encoder. Another menu opens when clicking onto the button:

Save param	eters to encoder	
C Save param	eters to encoder inclusive offset	
ouro param		

Choose the option "Save parameters to encoder" in order to save your settings.

<u>Tab "X10":</u>

gle encoder settings			
Commutating-encoder	X2A X2B X10	1	
	×	:10	
Gear factor Ingoing shaft: Outgoing shaft:	1	Mode C Quadrature evaluation (A-B-N) Pulse direction Up/down counter	
Line count:	1024	Options Disable tracks A and B Ianore zero pulse	
Number of increments per rotation:	4096		
		Error signal	
		High active C Low active	
	Y Canad		
<u>U</u> K	A <u>Cancer</u>		

In this menu external position sensors or frequencies for synchronisation can be adjusted.

Gear factor

The default setting is "Ingoing shaft" = "Outgoing shaft" = 1. This factor defines the adjustment of an external position to the actual position.

Line count

Digital incremental encoders supply their angular information with the help of track signals. They supply periodic square digital signals. The line count stands for the number of full periods of a track per revolution. In general, the line count is stated on a data sheet or the nameplate of the angle encoder.

The line count itself does not take a possible high resolution into consideration. The resolution of digital incremental encoders is four times higher than the line count itself due to the fact that the

incremental signals are evaluated four times. This effective line count is shown under **Number of increments per rotation**.

It is recommended that in case of having an index puls, the linecount is equal to the number of lines between two zero pulses (north marker, index pulses).

Mode : Quadrature evaluation (A-B-N)

These signals are interpreted as standard incremental signals. These are two rectangular track signals with a phase shift of 90° to each other. Optionally, this mode supports an index track with one periodical zero pulse per "line count".

Pulse direction

In this mode, one track describes the incremental change of the position. Another track determines the direction.

Due to the quadruple evaluation of the track signals enter the line count referring to 90° (not one revolution).

Incremental/reverse counter

This mode needs two tracks. Each one determines the change of the position in one direction. Hence, if one track is active, the other track should be inactive (constant level).

Due to the quadruple evaluation of the track signals enter the line count referring to 90° (not one revolution).

Options: Disable tracks A and B

The incremental signals are ignored. The interface sees an encoder at standstill.

✤ Ignore zero pulse

In general, only incremental encoders resp. devices with an incremental encoder emulation generate a periodical zero pulse. If necessary, this option suppresses the evaluation of this input if it is not given.

A zero pulse initiate a step in the position in case of noisy AB encoder signals to correct a to a full revolution. It is recommended to connect a index line if happen.

Error signal

The option **Error signal** means that contamination or other faults of the measuring system can be determined. The zero pulse input is used as error signal, i.e. the evaluation is only possible, when no zero track is parametrised. When an error is determined the encoder error 08-7 occurs. The evaluation of the error signal can be inverted (Low active, NAS signal) or not inverted (High active, AS signal).

13.9 Digital Inputs

By default, the servo positioning controller ARS 2000 has 10 digital inputs (DIN 0 to DIN 9), four of which (DIN 0 to DIN 3) can be cofigurated freely and can e.g. be used as position selectors. The inputs DIN 4 to DIN 7 are allocated to certain functions:

- DIN4: Power stage enabling
- DIN5: Controller enabling
- DIN6: Standard configuration: Limit switch E0, left (negative)
- DIN7: Standard configuration: Limit switch E1, right (positive)

The inputs DIN 8 and DIN 9 are reserved for the start and sample functions.

Additional inputs can be switched by using the analog inputs AIN 1 and AIN 2 as well as the digital outputs DOUT 1 and DOUT 2 as digital inputs.

With the use of an EA88 technology module eight more digital inputs can be added. Up to two technology modules can be integrated into the servo positioning controller ARS 2000.

The menu option **Display/Digital inputs** provides an overview of the available digital inputs and the current settings.

If digital inputs are used multiple times, they are highlighted by red writing. You can now click on the "Conflict detection" tab to analyse the multiple use.

The following window will appear:

In this case, DIN9 is simultaneously used by the functions Sample input and Homing run, HOME.

Ę	ב
5	٦
7	Ļ

Multiple use of digital inputs is tolerated by the firmware. The user is responsible for checking whether the combinations make sense.

13.9.1 Configuration of the Digital Inputs

In the menu <u>Parameters/<u>I</u>Os/Digital inputs</u> certain functions can be allocated to the digital inputs. To address a destination position from the 256 freely programmable destinations, a **Position Selector** of up to 8 bits is possible. Also relevant for the positioning are the **Start** and **Sample Input**. The sample input can store the current position in the internal memory, to use it for calculations (e.g. length measurements). The **Digital Stop** affects the positioning and the speed control. With **Reverse directions** the direction of rotation can be reversed in the speed control. For the homing, the **Start** signal and **Reference switch** can be switched via digital inputs.

Position sel	lector	Sample input	
	Wizard		DIN 9
Bit O	DIN 0]	,
Bit 1	DIN 1	Digital Halt	
Bit 2	DIN 2]	DIN AIN 2 (inactive)
Bit 3	DIN 3	Beverse direc	stion
Bit 4	-]	
Bit 5	DIN 11 (inactive)		
Bit 6	DIN AIN 2 (inactive)	Homing	
Bit 7	DIN AIN 2 (inactive)	Homing switch	DIN 9
Start	DIN 8	Start	💌
		-	
	Positioning		

The digital input	influences	Chapter
Position Selector	Positioning control	11.3.4 Positioning (Page 122)
Start	Positioning control	11.3.4 Positioning (Page 122)
Sample Input	Positioning control	11.3.4 Positioning (Page 122)
Digital Stop	Speed control,	11.1 Speed-controlled Mode (Page 105)
	Positioning	11.3.4 Positioning (Page 122)
Reverse direction <fw3.x></fw3.x>	Speed control	11.1 Speed-controlled Mode (Page 105)
Homing Start	Homing mode	11.3.3 Homing (Page 110)
Reference switch	Homing mode	11.3.3 Homing (Page 110)
(Course program) HOME	Course program	11.3.5.4 Digital Inputs (Page 132)
(Course program) START	Course program	11.3.5.4 Digital Inputs (Page 132)
(Course program) NEXT1	Course program	11.3.5.4 Digital Inputs (Page 132)
(Course program) NEXT2	Course program	11.3.5.4 Digital Inputs (Page 132)
(Course program) Stop	Course program	11.3.5.4 Digital Inputs (Page 132)
(Course program) Combined Start/Stop	Course program	11.3.5.4 Digital Inputs (Page 132)
(Jogging) negative	Jogging	11.3.6 Jogging Mode (Page 132)
(Jogging) positive	Jogging	11.3.6 Jogging Mode (Page 132)

Table 18:	Configuration	of the	digital	inputs

13.9.2 Extension of the Digital Inputs

By default, the servo positioning controller ARS 2000 has four freely configurable digital inputs. Additional inputs can be set by configuring the analog inputs AIN 1 and AIN 2 as well as the digital outputs DOUT 1 and DOUT 2 as digital inputs. The configuration of the I/Os is supported in the menu **Parameters/IOS/IO Configuration**. The menu offers an overview of the inputs and outputs available in the servo positioning controller ARS 2000. The EA88 technology modules are also displayed here, if used:

Overview Options			
Overview Available inputs and outputs			
Analogue inputs AIN 0 AIN 1 AIN 2	Analogue outputs	Digital inputs DIN 0 DIN 1 DIN 2 DIN 3 DIN 4 DIN 5 DIN 6 DIN 6 DIN 7 DIN 8 DIN 9	Digital outputs
Settings	Settings	Settings	Settings

The selected configuration is shown in the **Overview** tab. In the tab **Options** the analogue inputs AIN 1 and AIN 2 can be configured as digital inputs DIN AIN 1 and DIN AIN 2. The digital outputs DIN 2 and DIN 3 can be configured as digital inputs DIN 10 and DIN 11.

I/O Configu	tion	
Overview	ptions	
	Analogue inputs	
	☐ Use AIN 1 as digital input DIN AIN 1	
	☐ Use AIN 2 as digital input DIN AIN 2	
	Digital outputs	
	☐ Use DOUT 2 as digital input DIN 10	
	☐ Use DOUT 3 as digital input DIN 11	
<u>10</u>	X <u>C</u> ancel ? <u>H</u> elp	

13.10 Digital Outputs

By default, four digital outputs (DOUT 0 to DOUT 3) are available for displaying the selected operation statuses of the servo positioning controller ARS 2000. The output DOUT 0 is fixed and always indicates the operability of the servo positioning controller ARS 2000.

The menu **Display/Digital outputs** provides an overview of the available digital outputs and the current allocation of functions:

Digital outputs - Functional overview		
Standard outp	uts	
🥝 DOUT O	Servo controller operational	
🥝 DOUT 1	Speed reached	
🕜 DOUT 2	Remaining distance	
ODUT 3	Remaining distance	
<u>и</u> к	? <u>H</u> elp	

The number of digital outputs can be increased by eight by using an EA88 technology module. Up to two technology modules can be integrated into the servo positioning controller ARS 2000 and are displayed in the Functional overview in the menu **Display/Digital outputs**.

13.10.1 Configuring Digital Outputs

The digital outputs can be configured In the menu **<u>Parameters/IOs/Digital outputs</u>**.

Digital outputs		
Standard outputs		
DOUT O	Servo controller operational	
DOUT 1	Speed reached	
DOUT 2	Remaining distance 💽	
DOUT 3	Remaining distance 💽	
UK X Cancel ? Help		

Table 19:	Configuration	of the	digital	outputs
	oomigaration	01 1110	argitar	outputo

The digital output	is influenced by	Chapter
Off	Optional: fieldbus control	
On	Optional: fieldbus control	
I ² t-examination active	Motor capacity utilisation in critical range	
Comparison speed reached	Speed control, etc.	11.1 Speed-controlled Mode (Page 105)
Xset = Xdest	Positioning control	11.3.4 Positioning (Page 122)
Xact = Xdest	Positioning control	11.3.4 Positioning (Page 122)
Remaining distance	Positioning control	11.3.4 Positioning (Page 122)

The digital output	is influenced by	Chapter
Homing active	Homing run	11.3.3 Homing (Page 110)
Homing position valid	Homing run	11.3.3 Homing (Page 110)
Undervoltage in intermediate control	Monitoring of DC-link voltage	13.13 Configuration of the DC-link Monitoring (Page 185)
Following error	Position control	Configuration of the Position Controller (Page 63)
Output stage enabled	Controller enabling logic	6.1 Configuration of the Controller Enabling Logic (Page 67)
Brake released	Holding brake / Automatic brake	0 (Page 179)
Linear motor identified	General configuration	5.2.5 General Configuration(page 40)
Position trigger	Position trigger	13.11 Position trigger (page 179)
Lock of the setpoint active	Limit switches	5.2.21 Setting the Limit Switch Polarity (page 61)
Alternative target reached	Positioning control	11.3.4 Positioning (Page 122)

13.10.2 Configuration of the Messages for the Digital Outputs

Under the menu **Parameters/Positioning/Signals** a window appears in which speed signal, destination signals and following error signals can be parameterised.

13.10.2.1 Speed Signal Window: "Comparison Speed Reached"

The following configurations can be made on the **Speed signal** tab:

Signals			
Speed signal Destination Following error			
Speed signal			
Comparison speed	0 U/min ◀ ►		
Signal window	4 U/min ↓ ↓ ↓		
Response delay	0,0 ms	0,0 ms	
Threshold			
Threshold value			
<u> </u>	el ? <u>H</u>elp		

The parameters **Comparison speed**, **Signal window** and **Response delay** can be used to control the **Comparison speed reached** function of a digital output.

The output will be active when the current speed is in the range of $(n_{comp} - n_{signal} \dots n_{comp} + n_{signal})$. However, it will only be activated if the range is not left at least for the time $t_{response}$. The "Threshold value" parameter is used to set a second comparison speed. At present, this second speed is evaluated only by field bus systems using status words.

13.10.2.2 <u>Destination Signal Window: "X_{act} = X_{dest}"</u>

The following configurations can be made on the **Destination** tab:

Signals				
Speed signal Destination	Speed signal Destination Following error			
Tolerance window for "tar	rget reached"			
Angle/distance, pos.	0,03 U			
Angle/distance, neg.	-0,03 U			
Response delay	0,0 ms 0,0 ms			
The remaining distance is target position separately declared.				
<u>OK</u> <u>Cancel</u> <u>Phelp</u>				

These parameters can be used to control the function $X_{act} = X_{dest}$ of a digital output.

The output will be active when the current position is in the range of $(X_{dest} - X_{neg} \dots X_{dest} + X_{pos})$. However, it will only be activated if the range is not left at least for the time $t_{resonse}$.

The output is not deactivated until the range of the target window is left. For example, the output remains active when a positioning run is started if the new target is still within the target window.

13.10.2.3 Following Error Signal Window: "Following Error"

Speed signal	Destination	Following error	
Following erro	r ranges		
positive limi	t	0,14 U	
negative lim	it	-0,14 U	
Response delay		1,5 ms	1,3 ms

The following configurations can be made on the Following error tab:

These parameters can be used to control the "following error" function of a digital output.

The output will be active when the actual position is beyond the range of $(X_{ref} - X_{neg} \dots X_{ref} + X_{pos})$. However, it will only be activated if the range is not left at least for the time $t_{response}$. The following error signal is not the same as the "Following error" error. This has to be configured in the "Safety parameters" menu (see *Chapter 5.2.12, Page 52*).

13.11 Position trigger

The position triggers can be used to transfer information concerning the logic states of the position trigger, the rotor position trigger and the cam switch to digital outputs. 4 position triggers can be configured(vertical lines).

The following sources are available (horizontal lines):

- 4 position triggers (see chapter 13.11.1)
- 4 rotor position triggers (see chapter 13.11.2)
- 4 cam switches (see chapter 12.6.3)

Set the function of a digital output in the "Digital outputs" menu to "Position trigger 1..4" (see chapter 13.10.1) in order to mirror the information to a digital output of the servo positioning controller.

The position trigger can be configured in the menu Parameter / I/Os / Position trigger.

The following window will appear:

Position trigger		
Activation Parameters Position trigger 1 Position trigger 2 Position trigger 3 Position trigger 3 Position trigger 4 Rotor position trigger 1 Rotor position trigger 2 Rotor position trigger 3 Rotor position trigger 3 Rotor position trigger 4 Cam switch 1 Cam switch 2 Cam switch 3 Cam switch 4	Position trigger 1 2 3 4 	Cancel

In order to assign a source to a position trigger, the associated check box must be checked in the corresponding column.

It is possible to assign several position triggers or rotor position triggers to a position trigger. The logic information will be combined by an OR function.

ĺ

Please note that ORing can only be performed for **1 group**. ORing a position trigger and a rotor position trigger, for example, is **not possible**!

Position trigger

The vertical LEDs indicate the logic states of the sources. The horizontal LEDs indicate the resulting states.

Activation

The check boxes are used to assign sources to the targets.

If the check box is grey, there can be no connection with a higher group. In this case, delete all check boxes that are higher on this line.

If there is no check box at all, this means that the source cannot be selected since it has not been activated. If you want to activate a source, select the corresponding check box on the left.

> Option button ____

The option button can be used for a precise configuration of the position trigger or of the rotor position trigger, or to call up the cam disk (cam switch) menu.

The following is an example of a combination of signals by an OR function:

13.11.1 Position trigger

The menu can be found under Parameter / I/Os / Positiontrigger-Parameters.
This menu is used to configure the position trigger channels 1..4. The position trigger channels 1..4 are logic channels, i.e. they can have the logic values 0 and 1.

In order to use these position trigger channels, they can be combined logically in the position trigger menu and then assigned to a digital output.

The logic value of the position trigger depends on the current actual position values.

The following window will appear:

Position trigger 1	0,64 R (4,64 R
C Position trigger 2	
C Position trigger 4	
- I GINAN GINE +	
	Invest profile
🖌 OK 🗙	Cancel

Position trigger – parameters

Position trigger 1...4

Here you can select the position trigger to be parameterized.

(Input box: left-hand edge)

If the actual position is smaller than the position of the left-hand edge (in the example: 1.00 revolutions), the position trigger has the logic value 0 if the profile is not inverted (see below!). If the profile is inverted, the value is 1.

(Input box: right-hand edge)

If the actual position is greater than the position of the right-hand edge (in the example: 2.3 revolutions), the position trigger has the logic value 0 if the profile is not inverted (see below!). If the profile is inverted, the value is 1.

Invert profile

If the profile is not inverted, the logic level of the position trigger outside the two edges is "logic 0".

If the profile is inverted, the level outside the two edges is "logic 1". An inverted profile is symbolized as follows:

9,00 R	10,00 R

13.11.2 Rotor position trigger

The menu can be found under Parameter / I/Os / Rotorpositionstrigger-Parameter.

This menu is used to configure the rotor position trigger channels 1..4. These channels are logic channels, i.e. they can have the logic values 0 and 1.

In order to use these rotor position trigger channels, they can be combined logically in the position trigger menu and then assigned to a digital output.

The logic value of the rotor position trigger depends on the current encoder angle of the rotor. This means that the state changes periodically with every revolution.

The following window will appear:

ен Сп	latar pasitien trigger	1	10,00 .	jo,os	
Ся	otar position trigge	3			~
C H	latar pasition trigge	4			r
			E Invest cantile		

Rotor position trigger 1...4

Here you can select the rotor position trigger to be parameterized.

(Input box: left-hand edge)

If the encoder angle is smaller than the value of the left-hand edge (in the example: 13.22°), the rotor position trigger has the logic value 0 if the profile is not inverted (see below!). If the profile is inverted, the value is 1.

You can enter values between -180.0° and +180.0°.

(Input box: right-hand edge)

If the encoder angle is greater than the value of the right-hand edge (in the example: 17.20°), the rotor position trigger has the logic value 0 if the profile is not inverted (see below!). If the profile is inverted, the value is 1.You can enter values between -180.0° and +180.0°.

Invert profile

If the profile is not inverted, the logic level of the rotor position trigger outside the two edges is "logic 0".

If the profile is inverted, the level outside the two edges is "logic 1". An inverted profile is symbolized as follows:

13.12 Brake Control and Automatic Brake

If your motor is equipped with a holding brake, it can be triggered by the servo positioning controller ARS 2000. The servo positioning controller ARS 2000 can only drive holding brakes with a rated voltage of 24 V DC. To edit the parameters for triggering the holding brake, go to **Parameters/Device parameters/Brake functions**. The following window will open:

Brake functions		
Run delay		
Delay to unlock brake	0 ms	0 ms
Stop delay		
Delay until brake locked	0 ms	0 ms
C Automatic brake		
✓ <u>D</u> K X <u>C</u> ancel	? <u>H</u> elp	

A digital output is reserved in the servo positioning controller ARS 2000 for triggering the holding brake. The holding brake is always enabled, as the controller is enabled. For holding brakes with a high mechanical inertia a delay time can be set.

The **Run delay** serves the purpose of adapting the triggering of the holding brake to its mechanical inertia. For the controller enabling, in the modes of speed and position control or positioning, the speed setpoint is set to zero during this delay time. This way the drive remains idle until the brake is completely enabled.

After the controller enabling, speed setpoints or start commands for the positioning only come into effect after the run delay has run out.

Stop delay: Upon deactivation of the controller enabling, the speed setpoint is immediately set to zero. As soon as the actual speed is about zero, the holding brake kicks in. Simultaneously, the **stop delay** of brake time starts. During this time the drive is kept at its current position, until the holding brake has developed its entire holding torque. After the stop delay time has run out, the controller enabling is switched off. In both cases the mechanical wear on the holding brake is reduced.

Figure 19: Brake control: Run delay and stop delay

The servo positioning controller ARS 2000 also features an **automatic brake mode** function. If it is activated in this window, another delay time can be set. With this delay time it is possible to set the set current value of on-load axes to zero, if there will not be any positioning for a longer period of time.

DANGER!

In certain applications (e.g. in synchronisation mode) the activation of the automatic brake can cause damages to the brake and/or system. In such cases, check the application conditions before activating the automatic brake.

If the automatic brake function is activated, the setting of the current value to zero and the first subsequent start command for the positioning will only come into effect after the run delay time has run out.

Figure 20: Brake control: Automatic brake

13.13 Configuration of the DC-link Monitoring

In special cases, the DC-link voltage may be too high or too low.

If the DC-link voltage is too high (overvoltage), an integrated brake chopper activates a parallel resistor, so that the voltage can decrease via this brake resistor. This brake resistor is already integrated into servo positioning controller of the ARS 2000 series. If the voltage increases further, the servo positioning controller ARS 2000 shuts down. This function cannot be parameterised.

Excessively low DC-link voltages can cause an error, if so parameterised by the user.

The menu is activated via **Parameters/Device parameters/Intermediate circuit control**.

Intermediate circuit contro						
Intermediate circuit undervo	tage detection:					
Switching threshold	310 V					
, noviola						
Undervoltage error handling						
Disable power stage immediately						
	Settings					
<u> </u>	el ? <u>H</u> elp					

In the field **Switching threshold** you can determine the value below which the voltage has to drop for the servo positioning controller to detect an undervoltage.

The flag set in the servo positioning controller ARS 2000 can be read via different status queries; a digital output, for example, can be parameterised to display the event of an undervoltage in the intermediate circuit (see also *Chapter 13.10 Digital Outputs, Page 175*)

In the field **Undervoltage error handling** you can determine whether in the case of an undervoltage an error message (see *Chapter 10.2, Page 101*) is to be generated with the shut-off of the servo positioning controller ARS 2000.

13.14 Selection of the External Braking Resistor

The servo positioning controller converts the mains voltage into a dc-bus, which stores the energy in order to drive your application. On the one hand if the application needs energy e.g. for accelerating an inert mass this energy is extracted from the dc bus. On the other hand if the inert mass is decelerated the extra energy is fed into the dc-bus. So the dc-bus voltage increases.

As the dc-bus voltage must not exceed an upper value an electronic switch (braking chopper) discharges the dc-bus using a braking resistor. So the extra energy of the application is finally converted into heat by the braking resistor.

In the menu **Parameters/Device parameters/External resistor** you can select or see whether an external braking resistor is connected. This is important for calculating the power loss of the brake chopper. The l²t-monitoring for the brake chopper is only active if the internal braking resistor is used.

In the case of ARS 2100, ARS 2320 and ARS 2340 servo positioning controllers, the check box has to be selected depending on the connection. If an external braking resistor is connected but the check box is not checked, the system will continue calculating the power loss for the internal braking resistor. As a result, the potentially higher load capacity of the external braking resistor will not be utilised.

Caution!

If the external resistor has been selected, the I²t-monitoring for the internal braking resistor of the ARS 2000 servo positioning controller is deactivated! For information on the connection, please refer to the product manual for your specific device.

In the case of ARS 2302, ARS 2305 and ARS 2310 servo positioning controllers, the system can automatically detect whether an external braking resistor is connected or not. The user does not have to check the check box. It automatically indicates the status detected.

External resistor on	External resistor on	
Brake resistor dimensioning	Brake resistor dimensioning	

Start the "braking resistor wizard" by clicking onto the button **Brake resistor dimensioning**. The wizards supports the evaluation if the internal braking resistor is of sufficient dimension. It also calculates the characteristics of an eventually required external braking resistor.

13.15 Braking Resistor Wizard

The braking resistor wizard evaluates the requirements for the braking resistor according to the following criteria:

- ✤ General configuration
- Moving profiles / loads

Start the braking resistor wizard in menu Parameters/Device parameters/External resistor by the following button:

Brake	resistor	dimensioning	
-------	----------	--------------	--

First, the general configuration is requested with respect to application, gear box and arrangement:

Select for **application** one of the following variations:

- Linear axis: The following changes in energy will be considered: Acceleration / deceleration of masses, changes of the potential (energy) if the masses are moved in a vertical application and energy changes due to the acceleration / deceleration of rotary components (motor, gear box, spindle).
- Linear motor: The following changes in energy will be considered: Acceleration / deceleration of masses, changes of the potential (energy) if the masses are moved in a vertical application.

Rotary application: The following changes in energy will be considered: Acceleration / deceleration of rotary components (motor, gear box, spindle).

When applying a **gear box** enter the gear box ratio after activating the corresponding checkbox. Select the best suitable arrangement according to the real application.

The next step requests the numerical values for the inertia and efficiency factors:

The applied symbols are:

 Θ_M, Θ_S : Inertia of the motor resp. of the spindle

 η_M , η_S : Efficiency factor of the motor resp. of the spindle

s: Pitch of the spindle

Finally enter the information concerning the moving profile (times) as well as concerning the masses to move. Here, the braking resistor wizard always assumes an application with cyclic recurrent profiles:

At last, the evaluation follows. Three results are possible:

*	The internal braking resistor is sufficient:	The internal braking resistor is able to convert the appearing energy resp. power.
*	External braking resistor required:	The internal braking resistor is not able to convert the appearing energy resp. power. The wizard calculates the data for the external braking resistor (resistor value, pulse capability and continuous power), see also the figure below.
*	No suitable external braking resistor found:	The internal braking resistor is not able to convert the appearing energy resp. power. Also the calculated data for the external braking resistor do not match the given characteristics of the device. Apply a device with higher power.

The following figure shows an evaluation with calculated data for an example where an external braking resistor is required:

13.16 Control Circuit Cycle Times

Caution!

Only experienced user should change the configuration. Incorrect configurations may cause the drive to oscillate and destroy the motor!

In the menu **Parameters/Controller parameters/Cycle times** you can change the cycle times of various internal control circuits, e.g. of the current control circuit. The following window will appear:

			Factors			Cycle	times
Current controller	ti					104,2	µs
Speed controller	tn	=	2	-	ti =	208,4	µs
Position controller	tx	=	2 Internal servo v	* alue	tn =	416,8	µs
Interpolation computation (IPO)	tp	=	2	-	tx =	833,6	µs
		[Settings				

The Setpoints tab is invisible until the Settings button is pressed.

The time interval for the current controller can be configured. If the time interval is too short, an internal overflow may occur as in this case the processor does not have enough computing time. If the time interval is too long, the dynamic response will deteriorate which means that disturbances are compensated only very slowly.

The speed controller is superimposed on the current controller and will be called up normally in every second current controller cycle. If the factor is increased, the dynamic response will be decreased again as the calling frequency of the speed controller will be reduced. An increased factor increases the computing time reserves.

The position controller, on the other hand, is superimposed on the speed controller and will be called up normally in every second cycle. In this case, too, the information provided applies as it does for the last point "Interpolation computation".

Variable cycle times became necessary in order to be able to support functions requiring, for example, a synchronisation of the current controller intervals of several devices on a field bus system. In this case, the cycle time of the current controller is set once to an expected value. During operation, the cycle time will be automatically and continuously controlled within a very narrow correction range.

To extend the computing time, we recommend changing the cycle time of the current controller in the range of some µs. This is sufficient in most cases. The factors should be increased only for special areas of application, e.g. the "Interpolated Position Mode" under CANopen. In these cases, the necessary adaptations are normally performed automatically by the firmware so that the user does not have to change the cycle times. Please refer also to the information provided in the corresponding product manual.

Changed values have to be entered into the system with the help of Save and Reset. To do so, press the button at the bottom of the window.

13.17 Notch Filter

Use menu <u>Parameters/Controller parameters/Notch filter</u> to display and change the notch frequency and bandwidth for the notch filters.

Notch filter have the goal to suppress resonances. The filters can be adapted by notch frequency and bandwidth. Hint: A larger bandwidth decreases the damping of the notch frequency.

Caution!

Only experienced user should change the configuration. Incorrect configurations may cause the drive to oscillate and destroy the motor!

Some applications tend to vibrations or resonances due to their construction. These may be even excited by stiffly set control loops. The goal of the notch filters are to hide these frequencies from the closed control loop. This may support a reduction of process cycle times.

	Notch frequency	Bandwidth	active
Filter 1	1000 Hz	20 Hz	
Filter 2	1000 Hz	20 Hz	
Filter 3	1000 Hz	20 Hz	
Filter 4	1000 Hz	20 Hz	

Enter the center frequency of the notch filter (maximum damping) in the fields **Notch frequency**.

The fields **Bandwith** define the band of frequency which has a damping below -3dB.

Activate the single notch filters by marking the corresponding checkbox. Please activate a notch filter only if the application requires it. Always activate as less notch filters as possible.

Caution!

The activation of a notch filter at a drive without resonances may cause instability!

13.18 Communication by RS232

13.18.1 Selection of the RS232 Interface

Under the menu item <u>Options/Communication/RS232-interface</u> you can select the serial interface (COM port) via which the PC is connected to the servo positioning controller. The following menu will appear:

RS232 interface	
Active COM-port until now:	COM1:
New COM-Port:	COM1:
₽	

Select the correct COM port and click **OK**. The parameterisation program will try to set up a connection. To do so, it scans several baud rates. If it was impossible to set up a connection, the system will display an error message. Otherwise the program will communicate via the new port.

By default the parameterisation program supports 256 COM ports. Sometimes, using special IO/extension cards may cause problems because some COM port numbers are not supported by a Windows[®] operating system.

13.18.2 Communication Window for RS232 Transmission

Selecting the menu option <u>Options/Communication/Show communication window</u> opens a window, in which the communication via the serial interface resp. UDP (Ethernet) can be monitored. This mainly serves the purpose of debugging, for the 'normal user' it is of no interest.

>0B:1:000F:56	~
<000F:00000011:CC	
>DR:0234:DE	
<0234:00000004:C1	
>DB:003C/EB	
<003C:FFFFF9A0.52	
>DR:025D:F0	
<025D:00000000:CF	
>OR:1:000F:56	
<000F:00000011:CC	
>DR:0314:DD	
<0314:00000000:BC	
>DR:0038.EU	
<0038:00000008F	
20FE-0000000-50	
<025E:00000000000	
2005-00000011-0C	
VDB-0224-DE	
<0234-00000004-C1	
>0R:000C/EB	
<003C FFFFF880:48	
OR:025C/EF	
<025C:0000000:CE	
>OR:1:000F:56	
<000F:00000011:CC	
>OR:0314:DD	
<0314.0000000.BC	
>DR:0040:D9	
00-000000088	
20208-0000000C-E5	
DB-0250-50	
<025D 00000000 CF	
OB:1:000F:56	
<000F.00000011.CC	
DR:0234:DE	
<0234:00000004:C1	
>0R:01D&F2	
<01D8:88A0318A:19	
>OB:025E:F1	
<025E:00000000:D0	
>OR:1:000F:56	
<000F:00000011:CC	
>DR:0314:DD	
<0314:0000000BC	
2010/01/01/3	
C047C:0000115E:EE	
/on.ocouler	~
Y Canad	-
A Lancel	

13.19 Oscilloscope

The oscilloscope function integrated in the parameterisation program allows signal courses and digital statuses to be represented and physical parameters to be optimised in the reversing mode.

To start the oscilloscope:

✤ select the menu item Display/Oscilloscope or

Two windows will open: the actual oscilloscope and the oscilloscope settings window.

13.19.1 Oscilloscope Settings

click on this button

•

The "Oscilloscope-Settings" window includes six tabs for precise settings.

- Ch1: Selection of the measuring quantity on channel 1
- Ch2: Selection of the measuring quantity on channel 2
- Ch3: Selection of the measuring quantity on channel 3
- Ch4: Selection of the measuring quantity on channel 4
- Time base: Setting of the time base
- Trigger: Setting of the trigger

13.19.1.1 Tabs: CH1 ... CH4

The oscilloscope has four channels. The following settings can be selected on the tabs **CH1** ... **CH4** for the corresponding channels:

- Quantity to be displayed: Click on the selection box of the individual channels and select the physical quantity or the event you would like to display graphically.
- Channel colour: Click on the coloured screen area. A dialog box for selecting a colour will be displayed.
- Y-Scaling: Use the slide next to **Scaling** to adjust the scaling in vertical direction.
- Offset / Y-Position : Use the slide next to Offset to shift the vertical position of the curve. Clicking the **0** button resets the offset to 0.

The representation of the two channels can be cleared by clicking on the **Clear** button.

Oscilloscope - Settings Oscilloscope - Settings			
CH1 CH2 CH3 CH4 Time base Trigger	CH1 CH2 CH3 CH4 Time base Trigger		
CH1 Real current - set points (rms) Scaling:	CH1 Freely selectable communication object Scaling: 0,0100 /div Scaling: 0,50 div 0 0		
Clear	Clear Freely selectable communication object Number object 31E (hex) - +		
	signed v physical unit 1 v Mask: FFFFFFF (hex)		
✓ <u>OK</u> <u>X</u> <u>C</u> ancel <u>?</u> <u>H</u> elp	✓ <u>O</u> K X <u>C</u> ancel <u>?</u> Help		

If **Freely selectable communication object** has been selected as the quantity to be displayed, you can display any desired communication object on the oscilloscope. This requires the following additional information:

- The object number of the communication object
- Information as to whether the object returns a value with a sign. In this case check the signed check box.
- The physical unit of the object
- A mask. This mask is used to single out and display individual bits of a communication object. In the case of analogue values, this mask should be set to FFFFFFF (hex). The main purpose of this mask is to display individual bits of a status word.

The display of freely selectable communication objects is recommended for special cases only and should be used by experts only.

13.19.1.2 Tab: Time Base

- The upper **Time** slide is used to define the time resolution. A value of 10 ms/div, for example, means that the width of one square on the oscilloscope display corresponds to a time of 10 ms.
- The Delay slide is used to determine the position of the trigger event on the oscilloscope screen. A value of 0 means that the trigger event will be plotted at the left edge of the oscilloscope screen. A negative delay value means that the events before the occurrence of the trigger conditions will also be recorded ("Pretrigger"). If the value is negative, the trigger mark will be shifted to the right into the oscilloscope screen.
- Change the number of recorded values per channel by the drop-down menu Number of samples in the field Samples. This functionality is available as of Firmware of product step 3.5. Please note that the period for the data transmission significantly increases for maximum number of samples.

Oscilloscope - S	ettings			
СН1 СН2	CH3	CH4	Time base	Trigger
⊤Time base Time: Delay:		1 ms/di 4 0,0 ms 4	V	
<u> </u>	×	<u>C</u> ancel	? H	elp

13.19.1.3 Tab: Trigger

You can select a trigger source from the selection list in the Trigger source section.

Oscilloscope - Settings	Oscilloscope - Settings
CH1 CH2 CH3 CH4 Time base Trigger	CH1 CH2 CH3 CH4 Time base Trigger
Trigger source CH4 Target reached Mode C Auto C Normal C Single	Trigger source CH3 Speed - setpoints Level: 50,00 rpm 4 Mode © Auto Normal Single
✓ <u>D</u> K <u>K</u> ancel <u>? H</u> elp	V OK K Cancel ? Help

A distinction is made between digital and analogue trigger sources. Digital trigger sources can only have the status yes or no (active or inactive). One example is "target reached". Analogue trigger sources on the other hand can take on any numerical value (e.g. speed setpoint).

Set the following options in the trigger menu:

- Level Only visible in the case of analogue trigger sources. The trigger process starts when the analogue value has exceeded or fallen below the level.
 Trigger edge You can select a rising or a falling edge. See the table below.
- Mode Used to select when triggering occurs. There are three different trigger modes:
 - Auto: Triggering occurs and is displayed continuously regardless of whether the trigger condition has been fulfilled or not.
 - * Normal: Triggering occurs and is displayed when the trigger condition

is fulfilled. After the display and if the trigger condition reappears, triggering occurs again.

Single: It is triggered only once when the trigger conditions has been fulfilled. Then the status is set to inactive by deselecting the Run check box (see below).

Table 20: Oscilloscope: Tab "Trigger edges"

F	Rising edge	Digital trigger: Event occurs Analogue trigger: Level exceeded
Ł	Falling edge	Digital trigger: Event disappears Analogue trigger: Below level

The trigger mode and the therefore the oscilloscope are only active if the **Run / Stop** check box in the oscilloscope window is checked!

13.19.2 Oscilloscope Window

13.19.2.1 Symbol Buttons of the Oscilloscope

The oscilloscope has various buttons to start certain activities. They are shown here.

Table 21: Oscilloscope buttons

Symbol	Meaning
	Shifts the area shown in the horizontal direction.
A≒B	Opens the menu reversing generator
0	Terminates the zoom function.
Đ	Zoom function: Help text
X	Calls up Excel and creates a spreadsheet with values of the last measurement (Excel has to be installed on the PC).
A	Prints the oscilloscope window.
	Saves the oscilloscope window as a bitmap.
•	Maximises the oscilloscope window.
P	Minimises the oscilloscope window.
2	Uses thick lines on the oscilloscope display.
1	Uses thin lines on the oscilloscope display.
Settings	Calls up the "Oscilloscope-Settings" window.

The integrated oscilloscope is should be used for analysing the following items:

Adjustments to the speed control loop

 \mathbb{A}

- Monitoring of the following error during position mode.
- Adjustments to positioning profiles
- Analysis of positioning process as far as the motor current s are concerned to find out current peaks
- Monitoring of the IO handling

13.19.2.2 Additional Buttons and Controls

Cursor CH2 103 [ms], 0,366 U/min	These controls the oscilloscope oscilloscope wi	are used to control and visualise the cursor of e. When the user opens the actual ndow, the current value of the selected constition) is displayed in a numerical form. In
	this example, the the time t=103 to another char	me channel CH2 has the value 0.366 rpm at more channel CH2 has the value 0.366 rpm at ms. The Cursor button can be used to switch nonel.
✓ CH1 ✓ CH2 CH3 CH4	These check be in a selective m channel is show	oxes are used to show and hide the channels nanner. A selected check box means: this vn.
🥝 🔽 RUN / STOP	The LED indicates the current operating status of the oscilloscope. A green LED means: the oscilloscope is active. An inactive oscilloscope is indicated by a red LED.	
	The RUN / STO the oscilloscope oscilloscope fu	OP check box is used to activate or deactivate e. Check this checkbox if you want to use the nction.
wait for trigger	This coloured a oscilloscope. T	rea indicates the current status of the he following entries are possible:
	inactive start wait for trigge pretrigger	The oscilloscope is not active right now The oscilloscope is being started r The oscilloscope is waiting for a trigger event The recording of data has been started for the Pretrigger
	trigger found	A trigger event has been found but the recording of data has not been started yet
	data read	The channel data are being transmitted to the parameterization program

13.19.2.3 Curve Display

In the window shown below the measured values are displayed as a function of time.

To change the vertical scaling or to use the vertical position of a channel, use the setting options in the oscilloscope settings window. (See *Chapter 13.19.1.1 Tabs: CH1 ... CH4, Page 193*).

To change the horizontal scaling, choose another time base. Additional information can be found in *Chapter 13.19.1.2 Tab: Time* Base, *Page 194*). It may be necessary to restart the trigger process.

The vertical line indicates the time when the trigger event was triggered. Such a line is only visible if a negative delay has been defined for the trigger event (Pretrigger) (see also *Chapter 13.19.1.2, Page 194*).

To get a detailed view of the curve (zoom), keep the right mouse button pressed and select the area you are interested in on the oscilloscope surface.

13.19.2.4 <u>"Settings" Overview</u>

The partial window shown below shows the current settings for the oscilloscope function. Doubleclicking this window leads you back to the oscilloscope settings window.

13.20 Reversing Generator

The reversing generator can be configured via the menu **Display/Reversing generator**. It is not used for normal operation but to optimise the speed and position controllers. In the reversing mode, the controller keeps running back and forth between two positions.

Reversing generator				
Parameters				
Reversing distance	8,00 R			
Speed	1000,00 rpm	Times Acceleration time		
Acceleration	128123 rpm/s ◀	7,8 ms Deceleration time		
Deceleration	137498 rpm/s	7,3 ms		
active/inactive				
✓ <u>O</u> K Cancel ? Help				

In the **Reversing distance** section, you can define a distance difference for travelling back and forth. The start point and the end point are located directly in the middle of this distance. As a result, the drive moves always symmetrically with regard to the position where the reversing generator is started. When it is deactivated, the drives moves back to its original start position. This allows the area of movement to be assessed in a better way, particularly in the case of linear arrangements with limited movement space. The drives starts always in the positive direction of movement.

Set the running speed in the **Speed** field.

Normally, a rectangular function is required for the speed setpoint. In this case the maximum values should be entered into the fields **Acceleration** and **Deceleration**. The speed and the accelerations are used to determine the resulting times for the start and brake process. These times are displayed.

Modifications of the reversing distance are ignored unless the reversing generator is restarted. Changes of the other parameters are adopted at the points of reversal. The drive stops for a few ms at the points of reversal.

When the generator is started, the servo positioning controller performs cyclic movements (see also the illustration above). We recommend bringing the slide manually into a position with the largest possible distance to the end stops and then starting with small running distances and low speeds.

13.21 Info Window

You can call up general information concerning the Metronix ServoCommander[™] under **Help/Info**. The following window will appear:

You can find the following information on the Copyright tab:

- Program name, version
 - Sales partner: Address and phone number
 - Internet link: Click on the button to activate it.
 - Email: Click on the button to create an e-mail.

You can find the following information on the Firmware/Hardware tab:

- Main board: Type, serial number, version, identification data
 - Bootloader: Version, current and maximum permissible number of write cycles (firmware downloads)
 - ➢ Firmware: Version

You can find the following information on the **Communication** tab:

- COM port and baud rate used (online parameterisation)
- File used (offline parameterisation)

The **Times** tab gives you information concerning the cycle times of the current controller, speed controller, position controller and interpolator.

The Peripheral tab includes information on angle encoders and technology modules (if inserted).

The tab **Memo** includes information concerning the parameter set and the applied servo positioning controller. Here, you can enter an name for the parameter set as well as for the servo positioning controller. Simply click on the "…"-button behind the appropriate name.

fo		
Communication Times Peripheral Memo		
Name of the		
parameter set:	Parameter Set 2005-04-07	
Name of the drive:	X-Axis	
<u>✓ 0</u> K		

13.22 Fast Access via Icon Bar

Some functions of the parameterisation program Metronix ServoCommanderTM can be accessed directly using the icons beneath the menu bar:

Symbol	Meaning
Datei Betriebsmodus / RS 232 Deutsch English Francais Espagnol taliano 中文 Pyccкий česky Hollands Eλληνίκα	Setting the language. The language choice opens on a click onto the arrow button next to the flag Select the desired laguage via a click onto the flage or the name.
RS 232	Online parameterisation via RS232
UDP	Online parameterisation via UDP / Ethernet
Offline	Offline parameterisation
Æ	Oscilloscope

Table 22: Fast access via icon bar

Symbol	Meaning
	Motor data menu
	Current controller
	Speed controller
t∎×+	Position controller
ଷ	Angle encoder settings menu
I <mark>REF</mark>	Homing
	Set positions
>→ 0	Approach position
Save Parameter	Save parameters
Reset	Reset servo controller
3	Refresh all windows

Some languages (e.g. Chinese) need a special font (Arial Unicode MS). This font has to be selected for all display elements in the system configuration of your computer.

14 Operating Mode and Error Message

14.1 Operating Mode and Error Display

A seven-segment display is supported. The following table shows the displayed symbols and their meaning:

Display	Meaning	
	In this operating mode the outer bars "rotate", depending on the speed resp. the position of the rotor.	
/_/ /_/.	If the drive is enabled, the center bar of the seven-segment display is on.	
	The servo positioning controller ARS 2000 is yet to be parameterised. (seven-segment display = A)	
	Operating mode torque control, the two bars on the left hand of the display are on. (seven-segment display = I)	
P xxx	Positioning, "xxx" stands for the position set number. The numbers are successively indicated.	
PH x	 Homing is active, "x" stands for the active phase of the homing run. 0 : Search phase 1 : Crawling phase 2 : Positioning to zero position The figures are successively indicated. 	
E xxy	Error message / number with index "xx" and subindex "y"	
-xxy-	Warning message / number with Index "xx" and subindex "y". A warning is displayed at least twice on the seven-segment-display.	
	Option "Safe Stop" active for the ARS 2300 devices. (seven-segment display = H, blinking with a frequency of 2Hz)	

 Table 23:
 Display of operating mode and errors

14.2 Error / Warning Messages

If an error occurs, the servo positioning controller ARS 2000 will cyclically show an error message in its seven-segment display. The error message is comprised of an E (for Error), a main index and a sub index, e.g.: E 0 1 0.

Warnings have the same code numbers as error messages. As a distinguishing feature, warnings have centre bar before and after the number, e.g. **- 1 7 0 -**.

The following Table 24 summarizes the meaning and corresponding measures. A subindex "*" means that there are a number of errors which are explained in further documentation.

The error messages with the main index 00 do not reflect run time errors. They contain information and in general there are no measures required by the user. They occur in the error buffer only but will not be shown on the 7-segment display.

Error	messages	Meaning of error message	Measures
Main- index	Sub- index		
00	0	Invalid error	Information: An invalid (corrupted) entry in the error buffer is marked by this error number. No measures required.
	1	Invalid error detected and corrected	Information: An invalid (corrupted) error entry is detected and corrected. The Debug information stores the initially found error number. No measures required.
	2	Error cleared	Information: The active errors have been cleared No measures required.
	4	Serial number / device type changed (change of modules)	Information: A flexible error buffer (service module) has been plugged into another device No measures required.
01	0	Stack overflow	Incorrect firmware? If necessary, reload the standard firmware again. Contact the Technical Support
02	0	Undervoltage of DC-bus	Error reaction set to "disable drive"? Check (measure) the intermediate circuit voltage
03	0	Overtemperature analogue motor	Motor too hot? Check the parameterization (current controller, current limitation).

Table 24:	Error /	Warning	messages
-----------	---------	---------	----------

Error	messages	Meaning of error message	Measures
Main- index	Sub- index		
	1	Overtemperature digital motor	Suitable sensor? Sensor defective? Error also occurs if sensor is bypassed: device defective.
04	0	Overtemperature of the power stage	Plausible temperature display? Check the installation conditions, filter mats of fan dirty?
	1	Overtemperature in the DC-bus	Device fan defective?
05	0	Internal undervoltage supply 1	The error cannot be eliminated by the user. Contact the
	1	Internal undervoltage supply 2	Technical Support and - if necessary - send the servo
	2	Driver voltage fault	positioning controller to the sales representative.
	3	Undervoltage of digital I/O	Check the outputs for short-circuits or specific load. If
	4	Overcurrent of digital I/O	necessary, contact the Technical Support.
06	0	Short circuit in the power stage	Power stage defective? Motor defective? Short-circuit in cable?
	1	Overcurrent brake chopper	Check the braking chopper circuit (connections). Check the external brake resistor (if included). If necessary, contact the Technical Support.
07	0	Overvoltage	Check connection to braking resistor (internal / external) Braking resistor overloaded? Check rating.
08	0	Angle encoder error resolver	See measures 08-2 08-7
	1	Sense of rotation of the serial and incremental position evaluation is not identical	A and B-track are mixed up. Correct (check) the connection of the tracks.
	2	Error of track signals Z0 Incremental encoder	Angle encoder connected? Angle encoder cable defective?
	3	Error of track signals Z1 Incremental encoder	Angle encoder defective? Check the configuration of the angle encoder interface.
	4	Error of track signals of digital incremental encoder	compliance with EMC recommendations.
	5	Error of Hall signals incremental encoder	
	6	Communication error encoder	

Error	messages	Meaning of error message	Measures
Main- index	Sub- index		
	7	Signal amplitude incremental track erroneous	
	8	Internal encoder error	Communication error? Check the encoder type, contact the Technical Support, if necessary.
	9	Encoder at X2B not supported	Please contact the Technical Support.
09	0	Old encoder parameter set (type ARS)	Please read this documention or contact the Technical Support.
	1	Encoder parameter set cannot be decoded	
	2	Unknown encoder parameter set version	
	3	Corrupted encoder parameter set data	
	7	Encoder EEPROM has write protection	
	9	Too small memory size of encoder EEPROM	
10	0	Overspeed (motor overspeed protection)	Encoder offset angle correct? Overspeed protection limit too small?
11	0	Error at start of homing run	No controller enabling
	1	Error during homing run	Homing has been interrupted e.g. by disabling the drive.
	2	Homing run: No valid index pulse	The required index pulse is missing
	3	Homing run: timeout	The maximum time parameterized for homing has been consummated before the homing run has been completed.
	4	Homing run : Wrong or invalid limit switch	The associated limit switch is not connected. Limit switches mixed up
	5	Homing run: I²t / following error	Unsuitable parameterisation of acceleration ramps. Invalid stop reached, e.g. because no homing switch is connected. Contact the Technical Support.

Error	messages	Meaning of error message	Measures
Main- index	Sub- index		
	6	Homing run: End of homming distance	The maximum homing distance has been travelled but the reference point of the destination of the homing run have not been reached.
12	0	CAN: Two nodes with the same ID	Check the configuration of the devices connected to the CAN bus.
	1	CAN: Communication error / bus OFF	The CAN chip has switched off the communication due to communication errors (BUS OFF).
	2	CAN: Communication error on send	The signals are disturbed during the transmission of messages.
	3	CAN: Communication error on receive	The signals are disturbed during the reception of messages.
	4	No Node Guarding-telegram during the parameterized time received	Equalize the cycle time of the remote frames with the PLC resp. failure of the PLC. Signals interfered?
	9	CAN: Protocol error	Please contact the Technical Support.
13	0	Timeout CAN-Bus	Check the timeout parameter for CAN bus.
14	0	Insufficient supply for indentification	The available intermediate circuit voltage is too low for the measurement.
	1	Identification current controller : measurement Cycle insufficient	The automatic parameter identification process delivers a time constant beyond the parameterisation value range. The parameters must be optimized manually.
	2	Power stage could not be enabled	The power stage has not been enabled. Check the connection of DIN4.
	3	Power stage prematurely disabled	The power stage has been disabled while the identification process was running.
	4	Identification does not support selceted resolver	The identification cannot be performed with the present angle encoder settings. Check the configuration of the angle encoder. If necessary, contact the Technical Support.
	5	No index pulse detected	The index pulse could not be found after the maximum number of electrical rotations. Check the index pulse signal.

Error	messages	Meaning of error message	Measures
Main-	Sub-		
index	index		
	6	Invalid hall signals	The pulse sequence or the segmentation of the Hall signals is unsuitable. Check the connection. If necessary, contact the Technical Support.
	7	Identification not possible	Ensure a sufficient intermediate circuit voltage. Rotor blocked?
	8	Invalid number of poles pairs	The number of pairs of poles calculated is beyond the parameterisation range. Check the motor data sheet. If necessary, contact the Technical Support.
	9	Automatic parameter identification: General error	Take further information from the additional error data and contact the Technical Support.
15	0	Division by zero	Please contact the Technical Support.
	1	Out of range error	
	2	Mathematical underflow	
16	0	Errorneous program execution	Please contact the Technical Support.
	1	Illegal interrupt	
	2	Initialization error	
	3	Unexpected state	
17	0	Max. following error exceeded	Increase error window. Acceleration parameterization too large
	1	Encoder difference control	Check the connection of the encoders. Check the parameterized gear.
18	0	Warning analogue motor temperature	warning threshold: analogue motor temperature overflowed
21	0	Error 1 current measurement U	The error cannot be eliminated by the user. Contact the
	1	Error 1 current measurement V	Technical Support and - if necessary - send the servo positioning controller to the sales representative.
	2	Error 2 current measurement U	·
	3	Error 2 current measurement V	
22	0	PROFIBUS: Worng initialization	Technology module defective? Contact the Technical Support.
	1	PROFIBUS: reserved	

Error	messages	Meaning of error message	Measures
Main- index	Sub- index		
	2	Communication error PROFIBUS	Check the slave address. Check the bus terminators. Check the cabling.
	3	PROFIBUS: Invalid slave address	The communication was started with slave address 126. Select another slave address.
	4	PROFIBUS: Range overflow	Mathematical error during the conversion of physical units. The value range of the data and of the physical units do not match. Contact the Technical Support.
25	0	Invalid device type	Technical defect or unsuitable firmware.
	1	Device type not supported	Contact the Technical Support and - if necessary - send
	2	HW revision not supported	the serve positioning controller to the sales representative.
	3	Device function restricted	Contact the Technical Support and - if necessary - send the servo positioning controller to the sales representative.
26	0	No user parameter set	Load the default parameter set. If the error continues, contact the Technical Support.
	1	Checksum error	Please contact the Technical Support.
	2	Flash: Error during write-operation	
	3	Flash: Error during erase-operation	
	4	Flash: Error in internal flash	The error cannot be eliminated by the user.
	5	No calibration data	Please contact the technical support team.
	6	Missing user position data sets	Simply perform save & reset. Load the default parameter set. If the error continues to occur, contact the Technical Support.
	7	Faulty data tables (CAM)	Load default parameter set, reload the parameter set if necessary. If the error continues, contact the Technical Support.
27	0	Following error warning level	Check the parameterisation of the following error. Motor blocked?
28	0	Hours-run meter missing	Please contact the Technical Support.
	1	Hours-run meter: write error	
	2	Hours-run meter correced	Acknowledge the error. If the error continues to occur,

Error	messages	Meaning of error message	Measures
Main-	Sub-		
шиех	3	Hours-run meter converted	contact the Technical Support.
30	0	Internal calculation error	Dease contact the Technical Sunnort
21	0		
31	0	I't motor	Motor blocked?
	1	l ² t servo controller	Check the power rating of the drive package.
	2	I ² t-PFC	Check the power rating of the drive package. Select operation without PFC?
	3	I ² t-Break resistor	Braking resistor overloaded. Use external braking resistor?
32	0	Loading period DC-bus exceeded	Please contact the Technical Support.
	1	Undervoltage for active PFC	
	5	Braking chopper overload. Intermediate circuit couldn't be discharged.	
	6	Discharge period DC-bus exceeded	
	7	Failure of Power supply for controller enable	No intermediate circuit voltage. Angle encoder not ready.
	8	Supply power breakdown at controller enable	Interruption / mains failure of power supply. Check the supply.
	9	Phase failure	Failure of one or several phases. Check the power supply.
33	0	Following error encoder emulation	Please contact the Technical Support.
34	0	No synchronisation via field bus	Failure of synchronization messages from master?
	1	Field bus synchronisation error	Failure of synchronization messages from master? Parameterization of synchronization interval too small?
35	0	Speed protection of Linear motor	The encoder signals are disturbed. Check the installation for compliance with EMC recommendations.
	5	Error during the determination of the commutation position	For this motor an improper method has been chosen. Please contact the Technical Support.
36	0	Parameter limited	Check the value range of the parameter stated.
	1	Parameter not accepted	
37	0 9	SERCOS field bus	Refer to the SERCOS Manual or contact the Technical Support.

Error	messages	Meaning of error message	Measures
Main- index	Sub- index		
38	09	SERCOS field bus	Refer to the SERCOS Manual or contact the Technical Support.
39	06	SERCOS field bus	Refer to the SERCOS Manual or contact the Technical Support.
40	0	Negative SW limit switch	The position setpoint has reached or exceeded the respective software limit switch.
	1	Positive SW limit switch	Check the target data. Check the positioning range.
	2	Target position behind the negative SW limit switch	The start of a positioning run was suppressed as the target lies beyond the respective software limit switch.
	3	Target position behind the positive SW limit switch	Check the target data. Check the positioning range.
41	0	Course Program: Start synchronizing without former sampling pulse	Check parametrization of the pre-delay system
42	0	Positioning: Missing following position: Stop	The positioning target cannot be reached with the current positioning options or the current boundary conditions.
	1	Positioning: Reversing the direction not allowed: Stop	Check the positioning parameters.
	2	Positioning: Reversing the direction not allowed after stop	
	3	Start positioning rejected: wrong mode of operation	The change of the mode of operation could not be performed by the position set.
	5	Rotary axis: direction of rotation is not allowed	According to the selected mode of the rotary axis the calculated direction of rotation is not allowed. Check the selected mode.
43	0	Limit switch: Negative setpoint inhibited	The drive has left the intended motion range. Technical defect in the system?
	1	Limit switch: Positive setpoint inhibited	
	2	Limit switch: Positioning suppressed	
45	0	Supply voltage cannot be switched off	Technical defect? Contact the Technical Support.

Error	messages	Meaning of error message	Measures
Main-	Sub-		
index	index		
	1	Supply voltage cannot be switched on	
	2	Supply voltage was activated	
47	0	Timeout (thread mode, Set-up mode)	The speed has not been fallen below the required value for the thread mode (set-up mode) in time. Check the processing of the request by the PLC.
50	0	CAN: Too much synchronous PDOs	Please contact the Technical Support.
	1	SDO error	
60	0	Ethernet user specific (1)	Please contact the Technical Support.
61	0	Ethernet user specific (2)	Please contact the Technical Support.
62	0	EtherCAT: general bus error	Please contact the Technical Support.
	1	EtherCAT: ESC-chip not detected	
	2	EtherCAT: protocol error	
	3	EtherCAT: invalid RPDO-length	
	4	EtherCAT: invalid TPDO-length	
63	0	EtherCAT: ESC20-chip not detected	Please contact the Technical Support.
	1	EtherCAT: invalid data	
	2	EtherCAT: TPDO-Data not read	
	3	EtherCAT: No clock signal	
64	06	DeviceNet fieldbus (1)	Please contact the Technical Support.
65	01	DeviceNet fieldbus (2)	Please contact the Technical Support.
70	13	FHPP fieldbus (2)	Please contact the Technical Support.
80	0	Time overflow current controller IRQ	Please contact the Technical Support.
	1	Time Overflow speed controller IRQ	
	2	Time Overflow position controller IRQ	
	3	Time Overflow interpolator IRQ	

Error	messages	Meaning of error message	Measures
Main-	Sub-		
index	index		
81	4	Time overflow low-level IRQ	Please contact the Technical Support.
	5	Time overflow MDC IRQ	
82	0	Sequencing control	Normally just information. No measures required.
83	0	Invalid Technology module	Insert the technology module into the other slot, refer to the documentation of the module.
	1	Technology module not supported	Please contact the Technical Support.
	2	Technology module: HW revision not supported	
	3	Technology module: Write error	
	4	MC 2000 Watchdog	
90	0	Missing hardware component (SRAM)	Please contact the Technical Support.
	1	Missing hardware component (FLASH)	
	2	Error during booting of FPGA	
	3	Error during starting of SD-ADUs	
	4	Synchronization error SD-ADU after start	
	5	SD-ADU not synchronous	
	6	Trigger error	
	9	DEBUG-Firmware loaded	
91	0	Internal initialisation error	Please contact the Technical Support.

15 Field Bus Coupling

15.1 Field Bus Systems

At the time of writing of this manual Metronix supports the following field buses:

- CANopen bus, integrated in base device servo positioning controller ARS 2000
- PROFIBUS-DP
- SERCOS
- EtherCAT

The servo positioning controller ARS 2000 must, if necessary, be equipped with the corresponding field bus technology module.

15.1.1 Configuration of CANopen Communication Parameters

In the menu option **<u>P</u>arameters/<u>F</u>ield bus/<u>C</u>ANopen/<u>P</u>rotocol** you can adapt the CANopen communication parameters of the servo positioning controller ARS 2000 to your CANopen bus network.

You can configure the following communication parameters:

- Baud rate: This parameter determines the baud rate to be used on the CANopen bus.
- Basic node number: This parameter contains the base node number of the corresponding device. The identifiers of the individual messages are based on this node number. Each node number must only be used once in a CANopen network. It is possible to also integrate the digital inputs into the calculation of the node number (see below).
- Check identical node number: The servo positioning controller ARS 2000 automatically checks if a node number has mistakenly been attributed twice in a CANopen network. In that case, an error will be displayed on the servo positioning controller ARS 2000.
- Add DIN0...DIN3 on node number: The value of the digital inputs DIN0..DIN3 is added to the base node number. The input combination is only read once directly after the RESET at the servo positioning controller ARS 2000. It is thus possible to use simple bridges to 24 V to assign up to 16 different device numbers in the connector housing of X1.
- Add AIN1 on node number: The analog input AIN1 is included in the generation of the node number with a valence of 16. For a low level it may remain blank, for the high level the input must be bridged to V_{ref} = 10V.
- Add AIN2 on node number: The analogue input AIN2 is included in the generation of the node number with a valence of 32. For a low level it may remain blank, for the high level the input must be bridged to V_{ref} = 10V.

The field bus communication using the set parameters can be switched on and off using the buttons activate or deactivate.

15.1.2 CANopen: Configuration of the Transmit PDOs

In the menu <u>Parameters/Field bus/CANopen/PDO Configuration.../Transmit...</u> you can configure the CANopen telegrams for the transmit data (transmit PDO) (PDO = process data objects) according to your application. The Transmit PDOs are sent from the servo positioning controller to the host.

For further information concerning CANopen, see the CANopen manual.

The menu has the following elements:

- **Overview Transmit-PDO**: You find the following entries for each PDO:
 - Identifier
 - > Length
 - Objects
 - Transmission type
 - Value

vervie	wiransm	it-PD0s							
PDO	Identifier	Length	Object 1	Object2	Object3	Object4	Transmission type	Value	Adopt values
	0x181	1 Byte	pole_number (604D_				0 SYNC		V 5.4
	0x281	1 Byte	sample_data (204A_				2 SYNC		<u> </u>
	0x381	6 Bytes	statusword (6041_00	position_actual_value			0 SYNC	0.0 ms	? <u>H</u> elp
	0×490	2 Bytes	statusword (6041_00				On change	5.5 ms	• = :
toraç PD1	j e allocat i DNr. Ider 2	ion htifier(Hex 281) Length DO 1 Obj.1	C SYNC-Me C Cyclic C On change D1 D2 D3 D	ssage e 	SYNC-Message:	s:	No PD	O has been activated
nsert/ 2026	replace o _04 enco	bject der_x2	b_data_field	Length: Length:	4 Bytes 🔺	Position:		elete object Obj.1: sampl	e_data
204A	03 samp 04 samp	ole_dat	a a a	Length: Length: Length:	1 Byte 1 Byte 4 Bytes 4 Bytes	C in front of Obj.1			

- Edit TPDO x: Here you can modify the settings for that PDO which you have selected in the upper box.
- Settings: You find the following parameters for each PDO:
 - > Identifier (hex): Enter the ID of the new / changed PDO (hexadecimal number format).
 - > active: If this box is checked, the transmission of the PDO is enabled.
 - > **Transmission type**: Here you can choose between several modes:
 - SYNC Message: The servo positioning controller transmits the PDO, if it has received a certain number of SYNC messages from the host. Please also refer to number of SYNC-Messages.
 - **Cyclic**: The servo positioning controller transmits PDOs in cyclic intervals. The period of these intervals can be set by the parameter **time slice** (see below).
 - On change: The servo positioning controller transmits PDOs, if the value of at least one object (mapped into the PDO) has changed. To detect a change, the current values of the objects are compared with the values of the last transmission.

Define a minimum time interval between the transmission of two consecutive PDOs by the parameter time interval. If the time interval is zero the PDO is transmitted at each change of any mapped object.

Frequent changes of the mapped objects cause large bus traffic. This traffic can be reduced by the parameter **time interval**. This can also be achieved by the use of a mask. If parts of the PDO are masked, they will be ignored during the evaluation of the change of object values. Please refer to the parameter **mask**.

Number of SYNC-Messages: This input box is visible only if the transmission type SYNC-Message is selected. The PDO is transmitted, if the specified number of SYNCmessages has been received. For further information see Transmission type:

Transmission type • SYNC-Message	number of SYNC-Messages:	0
C cyclic		
O on change		

Time slice: The input box is visible only if the transmission type selection is cyclic or on change. For further information see Transmission type.

Transmission type	time slice	0,0 ms
• SYNC-Message		
O on change		

Memory mapping: This part of the window shows the graphical representation of the memory mapping. For the transmission types SYNC-Message and cyclic the window appears as follows:

S	torage all	ocation									
	PD0 Nr.	Identifier(Hex)	Length	DO	D1	D2	D3	D4	D5	D6	D7
	1	181	5	ОЫј.1	Ођ.2	ОЫ;.2	ОЫј. З	ОЫј. З			

For the transmission type **on change** the user can set a mask. Parts in which the mask is set to zero are ignored for the evaluation of the change of the mapped objects (logical AND operation between mask and object values). The display (hexadecimal or binary) can be changed via the button **Mask (hex.)** or **Mask (bin.)**

5	torage all	ocation									
	PD0 Nr.	Identifier(Hex)	Length	DO	D1	D2	D3	D4	D5	D6	D7
	1	181	5	ОЫ;1	ОЫ.2	ОЫ.2	ОЫ, З	ОЫ, З			
	Mask	(hex.) M	ask:	11111111	11111111	11111111	11111111	11111111	11111111	11111111	11111111

Insert/replace object: In this part, the user can insert or replace objects. In the left part objects can be selected for insert or replace operations.

inservieplace object	
2026 04 encoder x2b data field	Length: 4 Bytes A Position:
204A 02 sample data	Length: 1 Byte 💳 🛛 🔿 in front of Obj.1
204A_03 sample_data	Length: 1 Byte O in front of Obj 2
204A_04 sample_data	Length: 1 Byte
204A_05 sample_data	Length: 4 Bytes O in front of Obj.3
204A_06 sample_data	Length: 4 Bytes 🛛 🔿 at the end
603F_00 error_code	Length: 2 Bytes
6040_00 controlword	Length: 2 Bytes
6041_00 statusword	Length: 2 Bytes
604D 00 pole number	Length: 1 Byte _ insert
6060 00 modes of operation	Tength: 1 Byte

An object can be inserted only if the box **insert** is checked. Otherwise the object is replaced.

insert

With a click onto the button **insert** an insert operation will be performed. This button is visible only if the checkbox **insert** is active.

replace

With a click onto the button **replace** a replace operation will be performed. This button is visible only if the checkbox **insert** is not active.

For insert mode, the user can specify in the field Position, where the object has to be

inserted. For replace mode the object is specified which is replaced:

○ ОЬј.1 ○ ОЬј.2	
О ОБј.З	
replace	🗖 insert

Object delete: Check the boxes of the objects you want to delete:
 Object delete

🗖 Obj.1:	error_code
🗖 Obj.2:	pole_number
🔲 Obj.3:	statusword
delete	÷

A click onto the button **delete** deletes the selected objects.

Adopt values: The changes of the window are firstly stored in the parameterization software only. Click onto this button to transfer the new settings into the servo positioning controller.

15.1.3 CANopen: Configuration of the Receive PDOs

In the menu <u>Parameters/Field bus/CANopen/PDO Configuration.../Receive...</u> you can configure the CANopen telegrams for the receive data (receive PDO) (PDO = process data objects) according to your application. The Receive PDOs are sent from the host to the servo positioning controller.

For further information concerning CANopen, see the CANopen manual.

The menu has the following entries:

- Overview Receive-PDOs: You find the following entries for each PDO:
 - Identifier
 - > Length
 - Objects
 - Transmission type

Receive P	DO Param	eterisatio	n						
Overvie	w: Receiv	e-PDOs							
RPDO	Identifier	Length	Object 1	Object2	Object3	Object 4	Transmission type		Adopt values
1.	0x201	3 Bytes	sample_data (204A_	controlword (6040_0			0 SYNC		Y Evit
2.	0x301	2 Bytes	pole_number (604D	modes_of_operation			0 SYNC		
3.	0x401	4 Bytes	velocity_window (600	velocity_threshold (6)			0 SYNC		? <u>H</u> elp
4.	0x501	7 Bytes	max_torque (6072_0	polarity (607E_00)	profile_acceleration	0	0 SYNC		
Setting	ier (hex.):	301	active	Transmission © SYNC-Me © Cyclic © Änderung	i type ssage	number of SYNC-Messa	ges: 0	No PDO	has been activated.
PD(e allocati DNr. Ider 2	on tifier(He× 301	i) Length D0 2 Obj.1 (<mark>D1 D2 D3 D</mark> 0bj.2	14 D5 D6 D1	7			
Insert/ 604D 6065 6065 6066 6067 6068 6064 606A	replace o _00 pole _00 mode _00 foll _00 foll _00 posi _00 posi _00 sens _00 velo	bject _numbe s_of_o owing_ tion_w tion_w tion_w or_sel city_w	r peration error_window error_time_out indow_time ection_code indow	Length: Length: Length: Length: Length: Length: Length:	1 Byte 1 Byte 4 Bytes 2 Bytes 2 Bytes 2 Bytes 2 Bytes 2 Bytes 2 Bytes	Position: C Obj.1 C Obj.2		elete object Obj.1: pole_nu Obj.2: modes_	mber of_operation
606E 606F 6070	_00 velc _00 velc _00 velc	city_w city_t	indow_time hreshold breshold time	Length: Length: Length	2 Bytes 2 Bytes 2 Bytes	replace	🗆 insert	delete	

- Edit RPDO x: Here you can modify the settings for that PDO which you have selected in the upper box.
- Settings: You find the following parameters for each PDO:
 - > Identifier (hex): Enter the ID of the new / changed PDO (hexadecimal number format).
 - active: If this box is checked, the servo positioning controller evaluates the data of the received PDO.
 - > **Transmission type**: Here you can choose between two modes:
 - SYNC Message: The servo positioning controller evaluates the PDO, if it has received a certain number of SYNC messages from the host. Please also refer to number of SYNC-Messages.
 - **Cyclic**: Each PDO is evaluated
 - Number of SYNC-Messages: This input box is visible only if the transmission type SYNC-Message is selected. The PDO is evaluated, if the specified number of SYNCmessages has been received. For further information see Transmission type:

Transmission type	number of SYNC-Messages:	0
C cyclic	JTNC-Messayes.	
O on change		

Memory mapping: This part of the window shows the graphical representation of the memory mapping:

-5	torage all	ocation									
[PD0 Nr.	Identifier(Hex)	Length	DO	D1	D2	D3	D4	D5	De	D
	1	181	5	ОЫ,1	ОЫ.2	0Ы,2	0Ы, 3	ОЫ;.3			

Insert/replace object: In this part, the user can insert or replace objects. In the left part objects can be selected for insert or replace operations.

	Insertirenlace object		
		- Devision	
	2026 04 encoder x2b data field	Length: 4 Bytes	
	204A 02 sample data	Length: 1 Byte C in front of Obj.1	
	204A_03 sample_data	Length: 1 Byte 🚽 🔿 in front of Ohi 2	
	204A_04 sample_data	Length: 1 Byte C in front of Obi 2	
	204A_05 sample_data	Length: 4 Bytes	
	204A_06 sample_data	Length: 4 Bytes C at the end	
	603F_00 error_code	Length: 2 Bytes	
	6040_00 controlword	Length: 2 Bytes	
I	6041_00 statusword	Length: 2 Bytes	
L	604D 00 pole number	Length: 1 Byte _ insert 🔽 in	sert
	6060 00 modes of operation	Iength: 1 Byte	

An object can be inserted only if the box **insert** is checked. Otherwise the object is replaced.

insert

With a click onto the button **insert** an insert operation will be performed. This button is visible only if the checkbox **insert** is active.

replace

With a click onto the button **replace** a replace operation will be performed. This button is visible only if the checkbox **insert** is not active.

For insert mode, the user can specify in the field **Position**, where the object has to be inserted. For replace mode the object is specified which is replaced:

Object delete: Check the boxes of the objects you want to delete:
 Object delete

A click onto the button **delete** deletes the selected objects.

Adopt values: The changes of the window are firstly stored in the parameterization software only. Click onto this button to transfer the new settings into the servo positioning controller. ת

15.1.4 CANopen: Configuration of the Factor Group

In the menu <u>Parameters/Field bus/CANopen/Display units...</u> you can configure the parameters for positions, speeds and accelerations directly in the desired physical units. The calculation from or into the internal units is done directly by the servo positioning controller. This calculation uses the factor group. In this menu the user can calculate and set the factor group for positions, speeds and accelerations.

This window does not display the current factor group of the servo positioning controller! A non-ambiguous determination of the physical units from the factor group is not possible. To set the factor group of the servo positioning controller, firstly select the correct configuration then click on the button **Save the factor group to servo positioning controller**.

isplay units	-Malasia, usia	- • I	
C Increments [inc]	• per minute	C [min*s]	<u> </u>
O Degree [*]		C [\$²]	
O Meter [m] O Millimeter [mm]	O per second	(min ²)	
Settings Decimals	Gearbox	Feed constant	
Places: 1	Ingoing shaft: 1	1.00 mm/r	
,	Outgoing shaft:		
actor group	Outgoing shaft:		
actor group Position physical unit	Outgoing shaft: 1 Speed physical unit	Acceleration physical unit	
actor group Position physical unit [r]	Speed [] [] [] [] [] [] []	Acceleration physical unit [1] [min [*]]	
aetor group Position physical unit [r] position factor:	Outgoing shaft: 1 Speed physical unit [1] [min] velocity factor:	Acceleration physical unit [r] [min*] acceleration factor:	
actor group Position physical unit [r] position factor: Numerator 32768	Outgoing shaft: 1 Speed physical unit [r] [min] velocity factor: 2048	Acceleration physical unit [r] [min*] acceleration factor: Numerator 32	

The menu has the following elements:

- **Display units**: Here the user can specify the units of his application:
 - > **Position units**: In this field the unit of position parameters is specified.
 - Velocity units: In this field the time unit for the speed is selected. The corresponding position unit is specified in the upper field.

Example:

Position unit = "mm" Velocity unit = "per second" Resulting speed unit = "mm/s"

Acceleration units: In this field the time unit for the acceleration is selected. The corresponding position unit is specified in the field **Position units**. Example:

Position unit = "Revolution"

Acceleration unit = "s²" Resulting acceleration unit = "r/s²"

- Settings:
 - Decimals: The number of the decimals specifies the maximum resolution. Example:

Decimals = 2 Position setpoint = 123,40 r The numerical value 12340 is transmitted. The minimum resolution is 0,01 r.

- Gearbox: If the application uses a gearbox and the user wants to view his application correlated to the outgoing shaft he must enter the ratio of ingoing shaft and outgoing shaft.
- Feed constant: For translatory applications (e.g. linear axis), the conversion from motor revolutions to linear units must be specified. This field is disabled for rotary applications.
- Factor groups: The resulting Factor Group for position, velocity and acceleration is displayed. If desired, the user can display the factor group in hexadecimal or decimal format. Select the check box hexadecimal format in order to view the factor group in this format.
- Save the factor group to the servo positioning controller: The click on this button transfers the currently displayed values for the factor group into the servo positioning controller.

15.1.5 CANopen: Display of the control/status word

In the menu <u>Parameters/Field bus/CANopen/Diagnosis/Control/status word...</u> the actual values of the CANopen control/status word are displayed.

For further information concerning CANopen, see the CANopen manual.

The menu has the following elements/functions:

Show control word

The display of the control word can be activated or deactivated by this check box. The

display of the control word cannot be deactivated when the display of the status word is deactivated.

Show status word

The display of the status word can be activated or deactivated by this check box. The display of the status word cannot be deactivated when the display of the control word is deactivated.

The actual value of the control or status word is show as a hexadecimal number.

The particular bits of the control/status word are shown as LEDs. The top LED represents bit 0 and the bottom LED bit 15 of the corresponding word. Since the bit assignment of the control/status word depends on the mode of operation the LEDs description will be adjusted corresponding to the actual mode of operation and the bit function.

The last received command (see control word) and the actual state (see status word) is shown as plain text. The bits used to determine the command/state are displayed in the square brackets.

Com	mands			State
Bits	[7, 3, 2, 1, 0]:	Disable voltage		Bits [

Bits [6, 5, 3, 2, 1, 0]: FAULT

15.1.6 CANopen: Display of the PDO data

In the menu <u>Parameters/Field bus/CANopen/Diagnosis/PDO data...</u> the actual data of the RPDOs/TPDOs is displayed.

For further information concerning CANopen, see the CANopen manual.

CANopen: PDO data	
RPDOs RPDO 1 0x1211213433323100	TPD 05 TPD 0 1 0x3F00E8030000000
RPDO 2 No data	TPDO 2
RPDO 3 No data	TPDO 3 No data
RPDO 4	TPDO 4

The displayed data can be used to recognize data mapping or data swapping. The byte order of 2 bytes/4 bytes data types is "low byte…high byte". For better data interpretation we recommend to use the PDO mapping in menu **Parameters\Field bus\CANopen\PDO configuration**.

If the mapped objects allocate less than 64 bits the displayed data is filled with zeroes up to 64 bits.

The menu has the following elements:

RPDOs

The received data (master \rightarrow servo positioning controller) is displayed here. Whether the data is displayed or not depends on the check box **RPDO x**. When the check box is checked, the data is displayed. The data is interpreted as described below.

RPDO-Mapping used:

Overview: Receive-PDOs									
	RPDO	Identifier	Length	Object 1	Object 2	Object 3	Object 4	Transmission type	
	1.	0x201	7 Bytes	controlword (6040_0	modes_of_operation	target_position (607A		0 SYNC	
	2.	0x301	0 Bytes					0 SYNC	
	3.	0x401	0 Bytes					0 SYNC	
	4.	0x501	0 Bytes					0 SYNC	

The displayed RPDO data is assigned to the mapped CANopen objects as follows:

	Image: RPDO 1 0x1211213433323100
controlword 6040 _h _00 _h	
modes_of_operation 6060 _h _00 _h	
target_position 607A _h _00 _h	
irrelevant data (place holder)	

TPDOs

The transmitted data (servo positioning controller \rightarrow master) is displayed here. Whether the data is displayed or not depends on the check box **TPDO x**. When the check box is checked, the data is displayed. The data is interpreted as described below.

TPDO-Mapping used:

Г	Overviev	r Transm	it-PD0s						
	TPDO	Identifier	Length	Object 1	Object 2	Object 3	Object 4	Transmission type	Value
	1.	0x181	6 Bytes	statusword (6041_00)	position_actual_value			On change	0,0 ms
	2.	0x281	0 Bytes					On change	0,0 ms
	3.	0x381	0 Bytes					On change	0,0 ms
	4.	0x481	0 Bytes					On change	0,0 ms

The displayed TPDO data is assigned to the mapped CANopen objects as follows:

	TPDO 1
	0x3F00E8030000000
statusword 6041 _h _00 _h	
$position_actual_value6064_{h}00_{h}$	
irrelevant data (place holder)	

15.1.7 Configuration of PROFIBUS-DP Communication Parameters

In the menu **Parameters/Field bus/PROFIBUS/operation parameters** you can adjust the PROFIBUS-DP communication parameters of the servo positioning controller ARS 2000 with the technology module PROFIBUS-DP to your PROFIBUS-DP network.

Profibus	
PROFIBUS active	
Slave address	126
+ Offset from:	0
Add DINODIN3 to slave addres	\$
Add AIN1 to slave address	
Add AIN2 to slave address	
Effective slave address:	126 = 0x7E
✓ <u>O</u> K X <u>C</u> ancel	<u>? H</u> elp

The PROFIBUS-DP communication can be activated and deactivated via the check box **PROFIBUS** active.

You can also configure the following parameters:

- Slave address: This parameter includes the base slave address of the corresponding device. The identifiers of the individual message are based on this address. Each address may only be used once in a network. It is possible to also include the digital inputs into the calculation of the slave address (see below).
- Add DIN0...DIN3 to slave address: The value of the digital inputs DIN0..DIN3 is added to the base slave address. The input combination is only read once after a device reset. It is thus possible to use simple bridges to 24 V to assign up to 16 different device addresses in the connector housing of X1.
- Add AIN1 to slave address: The analog input AIN1 is included in the generation of the slave address with a valence of 16. For a low level it may remain blank, for the high level the input must be bridged to V_{ref} = 10V.
- Add AIN2 to slave address: The analogue input AIN2 is included in the generation of the slave address with a valence of 32. For a low level it may remain blank, for the high level the input must be bridged to V_{ref} = 10V.

Certain Profibus parameters will not become active until a "Save" and "Reset" operation has been performed. The system indicates this with the help of a message and a button.

15.1.8 Configuration of Profibus Telegrams

In the menu <u>**Parameters**/<u>**Field bus**</u>/<u>**PROFIBUS**</u>/**<u>Profibus telegram editor** you can configure the Profibus telegrams for you specific application. The following menu will appear:</u></u>

Respond teregram		Classe SS Masters S
	``	Slave >> Master)
m editor		
aceive telegram 0 💌		
R = 1 : Entry = 2010.0	(1 Byte)	Change enry
R = 2 : Entry = 967.0 R = 4 : Entry = 1001.0	(2 Bytes) (4 Bytes)	Annond ontru
R = 8 : Entry = 1001.1 R = 12 : Entry = 1001.5	(4 Bytes) (4 Bytes)	Appendiendy
	(1 5] (15)	Delete last entry
	-	
ed Memory:	16 Bytes	

In the **Telegram type** field you can define whether you want to edit reception telegrams or response telegrams. Then you can select the reception telegram or the response telegram in the **Telegram editor** field. If it is a reception telegram (master \rightarrow slave), you can select the corresponding response telegram.

The big area shows the structure of the telegram. The following information is provided for every entry:

- Address
- Communication object number
- Length of the entry in bytes

The address of the next entry is always the address of the current entry plus the length in bytes.

There are several ways to edit a telegram. The options can be accessed by pressing one of the following buttons:

Change entry

- Append entry
- Delete last entry

In order to be able to click **Change entry**, you must have highlighted a line in the telegram window. The following window will appear:

ADR = 1 : Entry = 2010.0 BDR = 2 : Entry = 962.0	(1 Byte) (2 Bytes)	Change enry
ADR = 4 : Entry = 1001.0 ADR = 8 : Entry = 1001.1	(4 Bytes) (4 Bytes) (4 Bytes)	Append entry
ADR = 12 : Entry = 1001.5	(4 Bytes)	Delete last entry
		Change enry
		hexadecimal format
der: 1001.0	hev: 03E9.00	✓ <u>O</u> K X Cancel

Enter a new **ID**. If you desire a hexadecimal presentation, check the check box. Click **OK** after the entry. The system checks whether the ID is valid. If it is, it will be taken over into the telegram. If it is not, the system will display an error message and the entry will not be changed. Clicking **Cancel** will abort this mode without changes.

If you click **Append entry**, the system will create a new entry which will be added to the end of the list. Data can be entered in the same way as under **Change entry**.

If you click **Delete last entry**, the last entry on the list will be deleted.

The **Used memory** field (under the big display area) shows the amount of memory used by the current telegram.

15.1.9 Physical Units Profibus

You can define the display units for the Profibus under

Parameters/Fieldbus/PROFIBUS/Display units. The following menu will appear:

Physical units Profibus	
Position	Revolutions/1000 [R/1000]
Speed	Revolutions per minute [rpm]
Acceleration	(Revolutions per minute)/second [rpm/s]
Feed constant	
1.000000000	No unit []
Gearbox Ingoing shaft: 1	
Outgoing shaft: 1	
<u> </u>	icel <u>? H</u> elp

You can define display units for the following quantities:

- Position
- Speed
- Acceleration

You can define a feed constant for translatory applications and a gear factor for rotary applications.

Please note that the feed constant <u>and</u> the gear ratio will be taken into consideration for calculating the internal factors! This is why the feed constant should be set to 1.0, provided it is not required, and the gear ratio to 1:1.

15.1.10 Additional Support of PROFIBUS-DP Functionality

In the Metronix ServoCommander[™] sub-directory ...*PROFIBUS* you can find:

- Example projects with function and data modules for SIEMENS S7 (compressed)
- Device master data

15.1.11 PROFIBUS: Display of the control/status word

In the menu <u>Parameters/Field bus/PROFIBUS/Diagnosis/Control/status word...</u> the actual values of the PROFIBUS control/status word are displayed.

For further information concerning PROFIBUS, see the PROFIBUS manual.

The menu has the following elements/functions:

Show control word

The display of the control word can be activated or deactivated by this check box. The display of the control word cannot be deactivated when the display of the status word is deactivated.

Show status word

The display of the status word can be activated or deactivated by this check box. The display of the status word cannot be deactivated when the display of the control word is deactivated.

The act	ual value of	the control o	r sta	atus	word is she	ow as	a hexa	decimal	number.
Control wor	d		Statu	s word					
Value	0x0000		Valu	e i	0x2148				

The particular bits of the control/status word are shown as LEDs. The top LED represents bit 0 and the bottom LED bit 15 of the corresponding word. Since the bit assignment of the control/status word depends on the mode of operation the LEDs description will be adjusted corresponding to the actual mode of operation and the bit function.

The last received command (see control word) and the actual state (see status word) is shown as plain text. The bits used to determine the command/state are displayed in the square brackets.

Commands	States	
Bits [3, 2, 1, 0]: Coast stop	Bits [6, 2, 1, 0]: SWITCH_ON_INHIBITED	

15.1.12 PROFIBUS: Display of the telegram data

In the menu <u>Parameters/Field bus/PROFIBUS/Diagnosis/Telegram data...</u> the data exchanged between the PROFIBUS master and the servo positioning controller is displayed.

For further information concerning PROFIBUS, see the PROFIBUS manual.

The displayed data can be used to recognize data mapping or data swapping. The byte order of 2 bytes/4 bytes data types is "high byte...low byte". For better data interpretation we recommend to use the telegram mapping in menu **Parameters\Field bus\PROFIBUS\Telegram editor**.

The menu has the following elements:

Receive telegram

The received data (master \rightarrow servo positioning controller) is displayed here. The data is interpreted as described below.

Data mapping of the received telegram:

•	Receive telegram (Mastar >> Slave) Response telegram (Slave >> Master)
Tele	rgram editor Receive telegram D
	ADR = 1 : Entry = 2010.0 (1 Eyte) ADR = 2 : Entry = 907.0 (2 Dytes) ADR = 4 : Entry = 1001.0 (4 Eytes) ADR = 8 : Entry = 1001.1 (4 Eytes) ADR = 12 : Entry = 1001.5 (4 Eytes)

The displayed telegram data is assigned to the mapped parameter numbers (PNUs) as follows:

	Receive telegram 0xE000053F00001388000000C8000186A0
Telegram header	
PNU2010.0	
PNU967.0	
PNU1001.0	
PNU1001.1	
PNU1001.5	

Response telegram

Anzeige der gesandten Telegrammdaten (Servopositionierregler \rightarrow Master). Interpretation der Daten:

The response data (servo positioning controller \rightarrow master) is displayed here. The data is interpreted as described below.

Data mapping of the response telegram:

C C	Receive telegram (Master >> Slave) Response telegram (Slave >> Master) gram editor
	Response telegram 0
	ADR = 1 : Entry = 1500.0 (1 Byte)
	ADR = 2 : Entry = 968.0 (2 Bytes)
	ADR = 4 : Entry = 1100.0 (4 Bytes)
	ADR = 8 : Entry = 1101.0 (4 Bytes)
	ADR = 12 : Entry = 1102.0 (4 Bytes)
	ADR = 16 : Entry = 1141.0 (4 Bytes)

The displayed telegram data is assigned to the mapped parameter numbers (PNUs) as follows:

	Response telegram	
	0xF0100B070000567C000000610000001F000000	60
Telegram header		
PNU 1500.0		
PNU 968.0		
PNU 1100.0		
PNU 1101.0		
PNU 1102.0		
PNU 1141.0		

15.1.13 Configuration of SERCOS Communication Parameters

In the menu option **Parameters/Field bus/SERCOS** you can adapt the SERCOS communication parameters of the servo positioning controller ARS 2000 to your SERCOS bus network. The following menu will appear:

SERCOS		
Sercos active		
Baud rate		
O 2 MBaud	Actual baud rate:	2 MBaud
• 4 MBaud	Drive address:	0
O 8 MBaud	Light power:	
C 16 MBaud	Light portor.	
ОК	X Abbrechen	? Hilfe

The SERCOS-communication is switched on and off by the check box Sercos active.

Furthermore, the following parameters can be configured:

- Baud rate: This field is used to set the baud rate with which the Sercos bus will communicate on the network. You have to select a uniform baud rate for the network. The field Actual baud rate shows the baud rate currently being used. As the baud rate will not be adopted until the Sercos communication is activated, it can deviate from the desired baud rate.
- Drive address: Enter the address under which the servo positioning controller should log into the Sercos network.
- Light power: In this field, the light power of the transmission diodes can be adapted to the optical fibres and the optical fibres lengths used. A low level corresponds to a low light power. More detailed information concerning the light power adjustment can be found in the Sercos manual.

15.1.14 Motion Coordinator MC 2000

In the menu option <u>Parameters/Field bus/MC2000/Operation parameters</u> you can change the communication parameters of the Motion Control technology module MC 2000. The following menu will appear:

☑ Data transfer ARS	2000 - MC2000 active	
	Node number	
	Effective node number:	1
<u>о</u> к	X <u>C</u> ancel ? Help	

The communication between the basic device (ARS 2000) and the Motion Control technology module (MC 2000) can be switched on and off by the check box **Data transfer ARS2000 – MC2000 active**.

The servo positioning controller with the plugged MC 2000 technology module always has the node number 1. Therefore, this value can not be changed. With a plugged MC 2000 technology module, a CAN communication via the integrated CAN-bus interface of the basic device is not available.

15.1.15 Configuration of EtherCAT Communication Parameters

In the menu option <u>Parameters/Field bus/EtherCAT/Operation parameters</u> you can adapt the EtherCAT communication parameters of the servo positioning controller ARS 2000 to your EtherCAT bus network.

EtherCAT is a real-time Ethernet technology. The servo positioning controller works as EtherCAT slave with supporting the CoE protocol (CANopen over EtherCAT)

The following menu will appear:

_ Node r		
Noder		
Recir	number	
+ Off	set from:	<u> </u>
ΓA	id DINODIN3 to the node numbe	u r
ΓA	id AIN1 to node number	
	id AIN2 to node number	
Effec	tive node number:	1
	nt ha incedire to secondarian th	e dischlad noromotors

Use the check box **EtherCAT active (CoE CANopen over EtherCAT)** to activate or deactivate the EtherCAT communication using the CoE protocol (CoE: CANopen over EtherCAT).

CAN specific parameters are not relevant. The master of an EtherCAT network administrates all node numbers himself.

INDEX TABLE:

A

Actual values
Actual value window 28
Alt+F4161
Analog monitor
Numeric overflow limitation 162
Scaling 162
Analogue inputs72
Analogue monitor162
Angle encoder
settings 56
Angle encoder identification58
Angle encoder settings164
Automatic brake183
Automatic identification angle encoder58
Automatic identification of current controller
parameters60
Automatic offset calibration72
axis error compensation 139, 141, 142, 143,
145, 146, 147, 151, 152

B

Baud rate

33
183
6, 187, 191

С

Cam disk139	, 148, 149
cam switch 139, 141, 142, 146	, 179, 180
Cancel	26
CANopen	
addition of AIN1 to node address	217
addition of AIN2 to node address	217
addition of DIN0DIN3 to node addre	ess 217
basic node number	
baud rate	
check for identical node addresses	217
configuration of the communication	216, 217,
220, 223	
Display of the control/status word	
Display of the PDO data	225
CD-ROM, installation from	30

Commissioning
load parameter set 38
manual setting of motor data 51
motor selection 50
Commissioning
inquiry linear motor 38
Resetting of information 38
Commissioning
Display units 46
Commissioning
input limits 48
Commissioning
IO configuration 49
Commissioning
manual setting of angle encoder data 59
Commissioning
manual input of current controller data
Commissioning
manual setting of speed controller 63
Commissioning
manual setting of position controller
Commissioning
parameter set
save as DCO file 65
Commissioning warning 37
Communication
Ethernet / UDP 87
RS232 87
Communication by RS232 191
Communication via communication objects . 29
Communication window for RS232
transmission 192
Commutation encoder 56
Configuration of the communication (RS232)30
Control elements27
Control interrupts 189
Controller enabling logic 67
Course program 129
digital inputs 132
global settings 130
linking positions130
Current controller identification 60
Cycle times
D

DC-link monitoring

configuration	
Switching limit	
Default parameter set	160
Destination parameters	
general buttons	
Digital inputs	172, 173
Start signal	
Digital outputs	175
configuration	
messages of positioning	
Directories	29
Display units	
display mode	83
direct input	83, 85
standard value	83
user-defined	83
user defined units	

E

172, 176
56
102
101
100
101
100
161
172, 176
187, 191
-

F

Field bus systems	216
CANopen	
PROFIBUS-DP	
Sercos	
Filter	
speed actual value	77
Firmware	
loading	
Flying Saw	107, 136, 137, 139
Following error	64
Messages	
Shutdown threshold	

G

General configuration	. 40
Н	
Hardware and Catturare Deguirements	05

ł

Hardware and Software Requirements	25
<u></u> <u>H</u> elp	26
Homing1	10
method 1	17
profile1	19
status 1	10
Homing methods1 [,]	10

Ι

I/O module	. 128, 172, 176
Icon bar	
fast access	
Info window	
Input limits	
settings	
Installation	
Installation from CD-ROM	
Intermediate circuit monitoring	
configuration	
J	
Jogging mode	132

L

Limit switch	
polarity ϵ	51
Load 9	92
Load DCO file	
Offline parameterisation9) 7
Load default parameter set	
Online parameterisation9) 4
Load file	
online parameterisation) 3

М

Messages	
digital outputs	177
Following error	64
Motor data	162
Auto detect	163
Ν	
Numerical input fields	

0

Offline parameterisation	96
Offset calibration, automatic	72
<u>O</u> K	26
Online	93
Operating mode	
position control	107
speed control	74, 105
torque control	106
Operating mode speed control	
setting	68
Optimisation	
speed actual value filter	77
speed controller	76
Oscilloscope	192
Channel display	193
Channels	193
Time base	193
Trigger	193

P

Parameter set

load	95
print	
save	
Parameter sets	92
PFC (Power Factor Control)	54
Position control	
operating mode	107
Position trigger	179, 180
Positioning	107, 122
driving profile	125
experts settings	126
go to destinations	127
settings (menu)	122
Positioning limits	109
Power stage	163
Pretrigger	199
Print	
online parameterisation	
PROFIBUS	
Display of the control/status word	
Display of the telegram data	
PROFIBUS-DP	
addition of AIN1 to slave address	227
addition of AIN2 to slave address	227
addition of DIN0DIN3 to slave addre	ess 227

Basis-Slave-Adresse	218, 221, 223, 224
Configuration of communicat	tion 227
content of the sub-directory P	PROFIBUS-DP. 230
physical units	
slave address	
telegrams	

R

REF button	117
Reversing generator	
Rotary axis	41, 44, 113, 213
Rotor position trigger	
RS232	30, 191
Communication	
troubleshooting	
RS232 interface	

S

Safety parameters52
Save
Save file
online parameterisation
Scope of Delivery14
Scroll box
SERCOS
configuration of communication232, 233, 234
drive address
light power
Serial communication
troubleshooting
Serial interface
Change COM-Port
configuration
Retry with old parameters
Service module 153
Service module / applications 157
Setpoint
Setpoint selection
setpoint ramp73
Setpoints 69
adder 69
enter speed/torque 70
Selector A 69
Selector B
Selector C70
sources
Speed control
operating mode 105

Speed controller

optimisation	
Speed limitation	106
Start signal	
Digital inputs	173

T

Target value	28
Technology module128, 172,	176
Temperature monitoring	54
Torque constant	107
Torque control	
operating mode	106

Transfer window161
Troubleshooting
operating mode speed control75
U
User-defined units
Display mode
V
Value, target
Ζ
Zoom